
 9-1

C h a p t e r

9

Visual Basic Program:

Infusion Maintenance

Application

In this chapter, you will learn how to use the following Visual Basic

Application functions to World Class standards:

 Open the Visual Basic Editor and

 Beginning a New Visual Basic Application

 Laying Out a User Input Form in Visual Basic

 Common Controls in Visual Basic

 Inserting a Labels and Textboxes in the Form

 Inserting a Group Box in the Form

 Inserting a Radio Button in the Form

 Inserting a Checkbox in the Form

 Inserting a Command Buttons in the Form

 Inserting a Picture in the Form

 Adding a Copyright Statement to a Form

 Adding a Copyright Statement

 Declaring Variables in the Program

 Setting Variables in the Program

 Computing Answers in the Program

 Outputting the Answers in the Program

 Programming for the Radio Button

 Programming for the Check Box

 Clearing the Data and Exiting the Program

 Adding a Browse and Open File Button

 Programming a Help Hyperlink and a Help Button

 Programming a Print Button

 Adding Code to Check for Blank Textboxes

 Controlling the Input in the Textbox

 Running the Program

 7-2

The Infusion Application

One semester ago, we were working with Veterinarian Technicians as they learned how to

calculate the amount of fluid to use to treat dehydrated animals and the flow rate to set when

administering it. After several weeks, we took the project to the computer department and we

developed an application that the professionals could use to quickly help the animals. After

several adaptations by the staff, a solution for the program was published. This chapter will take

us through the process again.

In this lesson, we need to utilize textboxes, labels, option buttons, check boxes and command

buttons as we have in previous training sessions. We will also utilize message boxes for help

information. We will also check our input text boxes for missing or incorrect information. We

will also have information appear on the form if the default for the drip rate is not selected.

In our tutorial, we will again use condition statements to make decisions and we will continue

to concatenate text strings to construct information that is useful to the computer user. Although

this program is larger than some done before, many components of the code are rhythmic and

we can quickly spot the changes to each segment of the software.

Open the Visual Basic Editor

In this session, we will step

through each procedure in adding

labels, textboxes and command

buttons and we will integrate into

the tutorial the methods to add,

subtract, multiply and divide

numbers. We will also include

formatting the answers as they are

shown in the answer labels. As in

every project, we will create

variables, set their values, execute

mathematical equations and output

data. In this lesson, we revisit the

procedure to add the computer

date and time to the form. We

open Visual Studio and we will

choose the default environment as

Visual Basic. Then we start

Visual Studio.

 Figure 9.1 – Default Environment Setting

 7-3

The next window we see is the

Start Page.

To open a new application, we

select New Project on the left pane

of the Start menu. The New

Project window will appear.

 Figure 9.2 – Microsoft Visual Studio Start Page

Figure 9.3 – New Project

We start a new Windows Application by picking the Windows Forms Application icon from the

installed templates list on the New Project window.

With the Visual Basic Editor open, select File on the Menu Bar and select Save All. For the

location, we will browse to the folder “Visual Basic Projects” that we made in previous

 7-4

chapters. We will name this project “Infusion Maintenance Application”. A folder called

“Infusion Maintenance Application” will be made and all the files for the program will be

located in the folder. We press the OK button to begin.

Figure 9.4 – Starting the Application

Beginning a New Visual Basic Application

Our project starts with a sketch where we ask for the animal’s name, species name, weight and

percent of dehydration and we place the data in textboxes. The animal’s weight could be either

in pounds or kilograms. The date and time will come from the computer system. This will be

placed in a label. We will set the pounds as default but someone else could easily opt for the

metric mass. The default drops will be 15 drops per milliliter for animals weighing 20 pounds

or greater and will be 60 drops per milliliter for animals weighing 20 pounds or less.

When we calculate the answers, we will compute the replacement volume in milliliters, the

maintenance volume in milliliters, and the total volume in milliliters. Then we will convert that

volume given over a twenty four hour period to milliliters per hour. By using a condition

 7-5

statement for the 15 or 60 drops per milliliter, we will determine the drops per second. Finally,

we will give the anesthesia rate in milliliters per minute based upon the animals weight and at 4

milliliters per pound and per hour.

We also found that professionals could pick tools to set the flow rate at 10 drops per milliliter

and 60 drops per milliliter. So we made an option group that was controlled be the default

checkbox.

We added a Clear button to wipe all of the input textboxes and output labels clean and a Print

button to send the from to the printer so these calculations can be saved in a file. We added an

Exit button to close the application.

Figure 9.5 – Sketch of the Resistor Sizing Form

We have created two more diagrams showing the answers to the help hyperlink and the Help

command button. The first one gives the explanation of when to uncheck the default checkbox.

Default Help for Drop Size

If the animal is less than or equal to 20 lbs body weight, we will use 60 drops per milliliter. If

the animal is more than 20 lbs body weight, we will use 15 drops per milliliter. Uncheck the

default box and any drop size can be chosen.

Figure 9.6 –Information for the Help Hyperlink

 7-6

Another diagram will show an example of the infusion calculation.

Figure 9.7 –Information for the Help Command Button

Laying Out a User Input Form in Visual Basic

We will change the Text in the

Properties pane to Infusion

Application to agree with the sketch

in Figure 9.5. Go ahead and change

the form in two other aspects,

BackColor and Size.

Alphabetic

(Name) frmInfusionMaintenance

Application

Size 575, 475

Text Infusion Maintenance

Application

The first number is the width and

the second number is the height.

The form will change in shape to

the size measurement.

 Figure 9.8 – Setting the Form Properties

 7-7

The background color is already white. There are many more attributes in the Properties pane

that we will use on future projects.

In this project, we will select the

font in the form. By selecting the

font, font style and size for the

form, each label, textbox and

command button we insert will

have these settings for their font.

When highlighting the row for

Font, a small command button with

three small dots appears to the right

of the default font name of

Microsoft San Serif. Click on the

three dotted button to open the

Visual Basic Font window.

 Figure 9.9 – The Font Window in Visual Basic

We will select the Calibri font,

Regular font style and 11 size for

this project to agree with the initial

sketch if the user input form. If we

wish to underline the text or

phrase in the label, add a check to

the Underline checkbox in the

Effects section of the Font

window. When we finish making

changes to the font property, select

the OK command button to return

to the work area.

 Figure 9.10 – Changing the Font to Calibri

Common Controls in Visual Basic

On the left side of the programming window, we can see the words Toolbox and Data Sources

written vertically. We will choose Toolbox and we will expand our selection to see the

Common Tools to use when making a user form.

 7-8

The common tools we would use are labels, text boxes, checkboxes, picture box, radio buttons

and buttons.

Figure 9.11 – Common Tools on the Toolbox

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information

on the window that will run in Windows; we add labels to textboxes to explain our intent. Press

the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the

upper left area of the form and hold down on the left mouse button, draw the dotted label box.

When the first label is done, the background color of the label matches the background color of

the form. In many cases that effect is visually pleasing to the eye, versus introducing another

color. Both color and shape will direct the user in completing the form along with the

explanation we place on the window to guide the designer in using the automated programs.

Use colors and shape strategically to communicate well.

 7-9

We will insert our first Label on the

upper left corner of the form and

call the entity lblAnimalName.

Alphabetic

(Name) lblAnimalName

Text Animal’s Name

Since the font is already set, we just

type “Animal’s Name” at the text

attribute.

 Figure 9.12 – The Finished Label on the Form

Inserting a Textbox into a Form

A textbox is used so that a user of

the computer program can input

data in the form of words, numbers

or a mixture of both. Press the

TextBox (ab) button on the

Control Toolbar to add a textbox.

To size the label area, click on the

upper left area of the form and

hold down on the left mouse

button, draw the dotted textbox.

 Figure 9.13 – Placing a TextBox on the Form

We will name the TextBox using

the three letter prefix txt followed

by the name or phrase of the tool.

For our first textbox, the name is

txtAnimalName.

Alphabetic

(Name) txtAnimalName

Size 124, 26

TextAlign Center

The size of the textbox will be 124

wide and 26 tall and the characters

inside the textbox will be center

aligned.

 Figure 9.14 – Setting the Size of the Textbox

 7-10

We will insert three labels named lblSpecies, lblSpecies and lblPercentDehydration that

display the names shown in Figure 9.15.. We will insert three more textboxes named

txtSpecies, txtAnimalWeight and txtPercentDeHydration as shown in Figure 9.15.

We will modify the properties for the textboxes as shown below.

Alphabetic

(Name) txtSpecies

Size 124, 26

TextAlign Center

Alphabetic

(Name) txtAnimalWeight

Size 124, 26

TextAlign Center

Alphabetic

(Name) txtPercentDehydration

Size 124, 26

TextAlign Center

 Figure 9.15 – Adding another Label

We will also add a label for pounds after the animal’s weight textbox. We will eventually add a

radio button group that will change the lb to kg if the users chooses the metric option.

Alphabetic

(Name) lblSystemOfMeasurementUnit

Text lb

We will add a label for a percent sign after the percent dehydration textbox.

Alphabetic

(Name) lblPercentDehydrationUnit

Text %

Inserting a Label into a Form to Post the Output

Some labels on a form are in a position to display an answer after the user inputs data and they

press the command button to execute the application. To add this label, press the Label (A)

button on the Control Toolbar to add a label. To size the label area, click on the upper left area

of the form and hold down on the left mouse button, draw the dotted label box.

 7-11

We will place a label to the right

of the lblSpecies label and call it

lblDate. We will make the label

text Date. The key attributes for

the label are:

Alphabetic

(Name) lblDate

Text Date

 Figure 9.16 – Placing a Label for the Answer

We will insert the label for the

answer to the bottom of lblDate

label and name the label

lblDateAnswer.

Alphabetic

(Name) lblSubnetMaskAnswer

BackColor White

BorderStyle FixedSingle

Size 240,26

TextAlign Middle left

We will make the borderstyle

FixedSingle to place a line around

the answer.

 Figure 9.17 – BackColor is White

Inserting a Group into a Form

When we want two radial or option buttons to toggle in an either or situation, then we will

insert a group box into the form. In this case, we want to toggle between English (pounds) and

Metric (kilograms). To add the GroupBox, choose the entity from the Container list on the

Toolbox. To size the GroupBox area, click on the upper left area of the form and hold down on

the left mouse button, draw the dotted Groupbox.

 7-12

We will insert the groupbox for

the system of measurement below

the txtSpecies textbox and name

the it grpSystemMeasurement.

Alphabetic

(Name) grpSystemMeasurement

The groupbox will enclose the

English and Metric radio buttons.

 Figure 9.18 – GroupBox

Inserting a Radio Buttons into a Form

To add the first option button to

place inside the GroupBox,

choose the Radial Button from

the list on the Toolbox. To size

the Radial Button area, click

inside the GroupBox and make a

rectangle. We will name the

entity optEnglish.

Alphabetic

(Name) optEnglish

Checked True

Text English (lb)

 Figure 9.19 – English Radio Button

To add the second option button

to place inside the GroupBox,

choose the Radial Button from

the list on the Toolbox. To size

the Radial Button area, click

inside the GroupBox and make a

rectangle. We will name the

entity optMetric.

Alphabetic

(Name) optMetric

Text Metric (kg)

 Figure 9.20 – Metric Radio Button

 7-13

Inserting a Checkbox into a Form

In the next part of the form, we will insert a checkbox that will use the 15 drops per milliliter

for animals weighing 20 pounds or more and the 60 drops per milliliter for animals weighing

less than 20 pounds. When the default checkbox is annotated, we will make the drop size group

invisible. Likewise, when the default box is unchecked, the four different size drops per

milliliter can be selected.

We insert a checkbox and place it

below the lblDateAnswer label.

We will name the entity

chkDefault.

Alphabetic

(Name) chkDefault

Checked False

Text Default

 Figure 9.21 – Default Checkbox

Inserting another Groupbox and Radio Buttons into a Form

We will insert the groupbox for the drop size below the lblDateAnswer label and name the it

grpDropSize.

Alphabetic

(Name) grpDropSize

Insert the four radio button in the

Drop Size group.

Alphabetic

(Name) opt10DropsPerMilliliter

Text 10 drops / ml

Alphabetic

(Name) opt15DropsPerMilliliter

Text 15 drops / ml

Alphabetic

(Name) opt20DropsPerMilliliter

Text 20 drops / ml

Alphabetic

(Name) Opt60DropsPerMilliliter

Text 60 drops / ml

 Figure 9.22 – Drop Size Group and Radio Buttons

 7-14

Inserting More Labels into a Form to Post the Output

There are six calculations that the Vet makes to determine the amount of fluid to give a

dehydrated animal and the rate which it should flow. These are replacement volume,

maintenance volume, total volume, milliliters per hour, drops per second and the anesthesia

rate. We will use labels to report the information, so for each one there are three common

controls to name. We use variations of the first label name on the second one in the row by

adding “answer” to the end and on the third label we concatenate “unit”. It is always best to

control every entity on the form so we can change properties on the control if needed.

Here are the definitions of each label.

Alphabetic 1st Label 2nd Label 3rd Label

(Name) lblReplacementVolume lblReplacementVolumeAnswer lblReplacementVolumeUnit

BackColor Control White Control

BorderStyle None FixedSingle None

Size 141,18 94,26 24,18

Text Replacement Volume None ml

TextAlign Middle left Middle left Middle left

Alphabetic 1st Label 2nd Label 3rd Label

(Name) lblMaintenanceVolume lblMaintenanceVolumeAnswer lblMaintenanceVolumeUnit

BackColor Control White Control

BorderStyle None FixedSingle None

Size 141,18 94,26 24,18

Text Maintenance Volume None ml

TextAlign Middle left Middle left Middle left

Alphabetic 1st Label 2nd Label 3rd Label

(Name) lblTotalVolume lblTotalVolumeAnswer lblTotalVolumeUnit

BackColor Control White Control

BorderStyle None FixedSingle None

Size 141,18 94,26 24,18

Text Total Volume None ml

TextAlign Middle left Middle left Middle left

Alphabetic 1st Label 2nd Label 3rd Label

(Name) lblMillilitersPerHour lblMillilitersPerHourAnswer lblMillilitersPerHourUnit

BackColor Control White Control

BorderStyle None FixedSingle None

Size 141,18 94,26 24,18

Text Milliliters per Hour None ml / hr

TextAlign Middle left Middle left Middle left

Alphabetic 1st Label 2nd Label 3rd Label

(Name) lblDropsPerSecond lblDropsPerSecondAnswer lblDropsPerSecondUnit

BackColor Control White Control

BorderStyle None FixedSingle None

Size 141,18 94,26 24,18

Text Drops per Second None Drops /sec

TextAlign Middle left Middle left Middle left

 7-15

Alphabetic 1st Label 2nd Label 3rd Label

(Name) lblAnesthesiaRate lblAnesthesiaRateAnswer lblAnesthesiaRateUnit

BackColor Control White Control

BorderStyle None FixedSingle None

Size 141,18 94,26 24,18

Text Anesthesia Rate None ml / min

TextAlign Middle left Middle left Middle left

The Infusion Maintenance form is

starting to take shape. We now

need to add command buttons.

 Figure 9.23 – Program Outputs

Inserting a Command Buttons into a Form

A command button is used so that a user will execute the application. Press the Button on the

Common Control menu to add a command button. To size the label area, click on the upper left

area of the form and hold down on the left mouse button, draw the command button as shown in

Figure 9.5.

 7-16

We will name the command button

using the name is cmdCalculate.

Alphabetic

(Name) cmdCalculate

Caption Calculate

Size 104,30

 Figure 9.24 – The cmdCalculate Button

Add four more command buttons,

named cmdClear, cmdPrint,

cmdHelp and cmdExit. The Clear

button will clear text boxes, output

labels, option button and

checkboxes. The Print button will

send the form to the printer. The

Help button will open a message

box that will show a complete

sample calculation with a full

explanation. The Exit button will

close the program. Notice the

equal spacing between the

command buttons gives a visually

friendly appearance.

 Figure 9.25 – Insert Four More Command Buttons

 7-17

We will add another label that will

launch a message box about the

default drop size.

Alphabetic

(Name) lblHelp

ForeColor Blue

Text Help

Although this is a label, it will act

like a button or hyperlink when the

user presses on it.

 Figure 9.26 – Help Hyperlink

Adding a Picture to a Form

We select the Common toolbox

and Picturebox and we draw a box

to the bottom of the buttons. We

name the picturebox imgIV. We

scroll down on the properties

window and select the three dots

button at the Image property and a

Select Resource window will

appear. We then will import the

graphic of our IV bag which we

have in Microsoft Paint and saved

as a bitmap image. We then press

the OK button and the image will

appear in the picture box.

 Figure 9.27 – IV Image

 7-18

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special

instructions in the form of comments such as copyright, permissions or other legal notices to

inform programmers what are the rules dealing with running the code. Comments at the

opening of the code could help an individual determine whether the program is right for their

application or is legal to use. The message box is a great tool when properly utilized to inform

someone if they are breaking a copyright law when running the code.

We insert a label called

lblCopyright and we type this in

for text.

Infusion Maintenance Application -
Copyright (c) 2013 by Charles
Robbins

 Figure 9.28 – Adding a Copyright Statement

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first four lines of the program will inform the individual

opening and reading the code, but those user that may run the application without checking, the

label on the bottom of the form with the copyright information is a great tool to alert the client

to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Calculate command button. At

the top of the program and before the line of code with Private Sub cmdCalculate_Click (),

place the following comments with the single quote (‘) character. Remember, the single quote

character (‘) will precede a comment and when the code is compiled, comments are ignored.

Type the following line of code:

 7-19

'Infusion Maintenance Application - Copyright (c) 2013 by Charles Robbins
'This program will open a dialogue box, allow the user to type the animal’s name, the animal’s species, the
'animal’s weight and the percent of dehydration. The program will calculate the replacement volume.
'maintenance volume, total volume, milliliters per hour, drops per second and anesthesia rate

Figure 9.29 – Adding a Copyright Statement

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of

the code, we create a variable to hold the value of that changing entity. In Visual Basic, the

dimension statement is one of the ways to declare a variable at the procedure level. The other

two ways are the Private and Public statements.

In this program, we will declare four variables as strings because they will hold names or data

that represent days and time. The other nine variables will be double integers since they will be

used in calculations.

Type the following code under the cmdCalculate subroutine of the program.

 ' declare variables
 Dim AnimalName As String
 Dim Species As String
 Dim TodaysDate As String
 Dim TimeofDay As String
 Dim AnimalWeight As Double
 Dim PercentDeHydration As Double
 Dim ReplacementVolume As Double
 Dim MaintenanceVolume As Double
 Dim TotalVolume As Double
 Dim MillilitersPerHour As Double
 Dim DropsPerSecond As Double
 Dim AnesthesiaRate As Double
 Dim Drops As Double

 7-20

Figure 9.30 – Declaring Variables with Dim Statements

Notice that the variable name should be a word or a phrase without spaces that represents the

value that the variable contains. If we want to hold a value of one’s date of birth, we can call the

variable, DateofBirth. The keywords Date and Birth are in sentence case with the first letter

capitalized. There are no spaces in the name. Some programmers use the underscore character

(_) to separate words in phrases. This is acceptable, but a double underscore (__) can cause

errors if we do not detect the repeated character.

Setting Variables in a Program

Next, we will set the variables using the equal and the TryParse function. We will set the animal

name and species variables using the equal sign. Both of these entities are strinsg so we do not

need to convert them. TodaysDate will equal the DateString on the calendar in the personal

computer that is running the program. TimeofDay will equal the TimeString on the clock on the

same personal computer.

The next expressions that capture the animal’s weight and percent of dehydration use the

Double.TryParse function. In this code, we type the name of the textbox and the text field that

holds the data followed by the name of the variable that will hold the number.

Type the following code under the “set variable” section of the cmdCalculate subroutine of the

program.

 ' assign values

 AnimalName = txtAnimalName.Text
 Species = txtSpecies.Text
 TodaysDate = DateString()
 TimeofDay = TimeString()

 7-21

 Double.TryParse(txtAnimalWeight.Text, AnimalWeight)
 Double.TryParse(txtPercentDehydration.Text, PercentDeHydration)

Figure 9.31 – Setting the Variables in the VBA Code

Compute the Answers

Our calculations will be based on a premise that the animal’s weight will be in kilograms, so we

will write a condition statement that asks if the English radio button is checked then we will

divide the animal’s weight by 2.2 (there are 2.2 pounds in a kilogram). Else if the Metric radio

button is checked then we state that the animal’s weight will stay the same.

After that we will calculate the replacement volume as the animal weight times the percent of

dehydration divided by one hundred and then times one thousand milliliters.

Then we will compute the maintenance volume as the animal weight times forty milliliters and

the total volume as the sum of the replacement volume and the replacement volume. We next

find the milliliters per hour as the total volume divided by 24 hours.

We will write another condition statement that asks if the animal is less or equal to 9.09008

kilogram then the drops will be 60 or else it will be 15.

 ' compute the answers
 If optEnglish.Checked Then
 AnimalWeight = AnimalWeight / 2.2
 Else
 AnimalWeight = AnimalWeight
 End If
 ReplacementVolume = AnimalWeight * (PercentDeHydration / 100) * 1000
 MaintenanceVolume = AnimalWeight * 40
 TotalVolume = ReplacementVolume + MaintenanceVolume
 MillilitersPerHour = TotalVolume / 24
 If chkDefault.Checked = True And AnimalWeight <= 9.09009 Then
 Drops = 60
 Else
 Drops = 15
 End If

 7-22

The following four condition statements asks if the default checkbox is annotated and if one of

the radio button is checked and then sets the drops to 10, 15, 20 or 60.

 If chkDefault.Checked = False And opt10DropsPerMilliliter.Checked = True Then
 Drops = 10
 End If
 If chkDefault.Checked = False And opt15DropsPerMilliliter.Checked = True Then
 Drops = 15
 End If
 If chkDefault.Checked = False And opt20DropsPerMilliliter.Checked = True Then
 Drops = 20
 End If
 If chkDefault.Checked = False And opt60DropsPerMilliliter.Checked = True Then
 Drops = 60
 End If

The subsequent calculation of drops per second is milliliters per hour times drops divided by

3600. We will also determine the anesthesia as the animal weight times 2.2 pounds times 4

milliliters per hour per pound and divided by 60 minutes per hour.

 DropsPerSecond = (MillilitersPerHour * Drops) / 3600
 AnesthesiaRate = (AnimalWeight * 2.2 * 4) / 60

Figure 9.32 – Computing the Answers

 7-23

Output the Data

The next section of code is the expressions that will take the six calculations and the computer

date and time and send that information to seven labels. For the six double integers, we will use

the “ToString” property to convert the double integer to string text and we will set the answer to

a two decimal number using “n2”.

For the lblDateAnswer.text we will concatenate the variable called TodaysDate and a space and

the variable TimeofDay.

 ' Output
 lblReplacementVolumeAnswer.Text = ReplacementVolume.ToString("n2")
 lblMaintenanceVolumeAnswer.Text = MaintenanceVolume.ToString("n2")
 lblTotalVolumeAnswer.Text = TotalVolume.ToString("n2")
 lblMillilitersPerHourAnswer.Text = MillilitersPerHour.ToString("n2")
 lblDropsPerSecondAnswer.Text = DropsPerSecond.ToString("n2")
 lblAnesthesiaRateAnswer.Text = AnesthesiaRate.ToString("n2")
 lblDateAnswer.Text = TodaysDate & " " & TimeofDay

Figure 9.33 – Output the Data

Programming for the Unit of Measurement Label

On the form, we double click on the optEnglish radio button. Then we type a condition

statement that asks if the radio button is checked then the lblSystemOfMeasurementUnit.Text

will equal "lb".

Private Sub optEnglish_CheckedChanged(sender As Object, e As EventArgs) Handles
optEnglish.CheckedChanged
 If optEnglish.Checked = True Then
 lblSystemOfMeasurementUnit.Text = "lb"
 End If
End Sub

 7-24

Again back on the form, we double click on the optMetric radio button. Then we type a

condition statement that asks if the radio button is checked then the

lblSystemOfMeasurementUnit.Text will equal "kg".

Private Sub optMetric_CheckedChanged(sender As Object, e As EventArgs) Handles
optMetric.CheckedChanged
 If optMetric.Checked = True Then
 lblSystemOfMeasurementUnit.Text = "kg"
 End If
End Sub

Figure 9.34 – If Then Statement for the System of Measurement Label

Programming for the Default Checkbox

Back to the form, we double click on the chkDefault checkbox. Then we type a condition

statement that asks if the check box is checked then the opt10DropsPerMilliliter.Visible,

opt15DropsPerMilliliter.Visible, opt20DropsPerMilliliter.Visible and opt60DropsPerMilliliter.Visible will

equal "false". That means these option buttons will not be visible. Else if the check box is not

checked then the opt10DropsPerMilliliter.Visible, opt15DropsPerMilliliter.Visible,

opt20DropsPerMilliliter.Visible and opt60DropsPerMilliliter.Visible will equal "true". That means these

option buttons will be visible.

Private Sub chkDefault_CheckedChanged(sender As Object, e As EventArgs) Handles
chkDefault.CheckedChanged
 If chkDefault.Checked = True Then
 opt10DropsPerMilliliter.Visible = False
 opt15DropsPerMilliliter.Visible = False
 opt20DropsPerMilliliter.Visible = False
 opt60DropsPerMilliliter.Visible = False
 Else
 opt10DropsPerMilliliter.Visible = True
 opt15DropsPerMilliliter.Visible = True
 opt20DropsPerMilliliter.Visible = True
 opt60DropsPerMilliliter.Visible = True
End If

 7-25

Figure 9.35 – If Then Statement for the Default Checkbox

Clearing the Data

To clear the textboxes or labels containing the data, we will clear the four input textboxes, the

seven output labels, and the six option buttons. Type the following code under the cmdClear

subroutine of the program

 Private Sub cmdClear_Click(sender As Object, e As EventArgs) Handles cmdClear.Click
 'clear the application entries and answers
 txtAnimalName.Text = String.Empty
 txtSpecies.Text = String.Empty
 txtAnimalWeight.Text = String.Empty
 txtPercentDeHydration.Text = String.Empty
 lblDateAnswer.Text = String.Empty
 optEnglish.Checked = True
 optMetric.Checked = False
 opt10DropsPerMilliliter.Checked = False
 opt15DropsPerMilliliter.Checked = False
 opt20DropsPerMilliliter.Checked = False
 opt60DropsPerMilliliter.Checked = False
 lblReplacementVolumeAnswer.Text = String.Empty
 lblMaintenanceVolumeAnswer.Text = String.Empty
 lblTotalVolumeAnswer.Text = String.Empty
 lblMillilitersPerHourAnswer.Text = String.Empty
 lblDropsPerSecondAnswer.Text = String.Empty
 lblAnesthesiaRateAnswer.Text = String.Empty
 End Sub

 7-26

Figure 9.36 – Computing the Clear Button by Clearing a Textbox and Label Caption

Exiting the Program

Figure 9.37 – Exiting the Program

To exit this program, we will unload the application and end the program.

Type the following code:

 'Exit the program
 Me.Close()

Programming a Help Hyperlink

To create a link to a label, we should double click on the blue Help label on the form. A private

sub will be created in the application called lblHelp_Click. We will want to add our code that

will launch a message box in this subroutine.

Private Sub lblHelp_Click(sender As Object, e As EventArgs) Handles lblHelp.Click

 MessageBox.Show("Default Help for Drop Size" & vbCrLf & vbCrLf & "If the animal is less than or

 7-27

equal to 20 lbs body weight, we will " & vbCrLf & "use 60 drops per milliliter. If the animal is more than 20
lbs body " & vbCrLf & "weight, we will use 15 drops per milliliter. Uncheck the default" & vbCrLf & "box
and any drop size can be chosen.")

End Sub

Figure 9.38 – Help Label

Programming a Help Button

On the form, we will double click on the Help command button. We will program a message

box using the MessgeBox.Show () expression. We use our storyboard information to construct

the message. We use the & vbCrLf & vbCrLf & to add lines to the document.

Private Sub cmdHelp_Click(sender As Object, e As EventArgs) Handles cmdHelp.Click

 MessageBox.Show("Infusion Example Calculation" & vbCrLf & vbCrLf & "Determine the infusion for a
32 lb dog that is 9 % dehydrated." & vbCrLf & vbCrLf & "Compute the replacement volume at 1 liter per 1
kilogram. The dehydration rate is reported as a decimal percent (9% = 0.09)." & vbCrLf & vbCrLf & "(32 lb
)/1×(1 kg)/(2.2 lb)×0.09/×(1 L)/(1 kg)×(1000 ml)/(1 L)=2880/2.2= 1309.09 ml replacement volume" & vbCrLf &
vbCrLf & "Compute the maintenance volume at 40 ml per 1 kilogram." & vbCrLf & vbCrLf & "(32 lb)/1×(1
kg)/(2.2 lb)×(40 ml)/(1 kg)=1280/2.2= 581.82 ml maintenance volume" & vbCrLf & vbCrLf & "Compute the
total volume by adding the replacement and maintenance volume together." & vbCrLf & vbCrLf & "1309.09
ml replacement volume + 581.82 ml maintenance volume = 1890.91 ml total volume" & vbCrLf & vbCrLf &
"Compute the milliliters per hour infusion rate by dividing the total volume by 24 hours." & vbCrLf & vbCrLf
& "(1890.91 ml)/24 hr = 78.79 ml / hr " & vbCrLf & vbCrLf & "Compute the drips per second infusion rate by
dividing the total volume by 24 hours and 60 minutes and 60 seconds. If the animal is less than 20 lbs body
weight, we will use 60 drops per milliliter. If the animal is more than 20 lbs body weight, we will use 15
drops per milliliter." & vbCrLf & vbCrLf & "(78.79 ml)/(1 hour)×(15 drops)/(1 ml)x(1 hour)/(3600 sec) = 0.33
drops / sec" & vbCrLf & vbCrLf & "Compute the anesthesia / surgery rate by multiplying the animal’s body
weight by 4 ml per lb per hour and dividing by 60 minutes." & vbCrLf & vbCrLf & "(32 lb)/1×(4 ml)/(1 hr |1
lb)×(1 hr)/(60 min) = 2.13 ml / min")

End Sub

Figure 9.39 – Help Button Code

 7-28

Programming a Print Button

When we want the completed form

printed we will need to do some

extra work. Back on the form, we

will open the Toolbox and at the

bottom of the menu, we will

expand the Visual Basic

PowerPacks and double click on

PrintForm.

 Figure 9.40 – Visual Basic PowerPacks and PrintForm

We double click on the Print

command button and we type the

following.

PrintForm1.PrintAction =
Printing.PrintAction.PrintToPreview
PrintForm1.Print()

 Figure 9.41 – PrintForm1 on the Program

 7-29

Figure 9.42 – Print Code

Adding Code to Check for Blank Textboxes

Still again, we will add four more condition statements on the code under the cmdCalculate

subroutine. We will check to see if the Animal’s Name textbox, the Species textbox, the

Animal’s Weight textbox and the Percent Dehydration textbox are blank. If one or all are blank,

then we will be prompted to fix the problem. If they all are not in the next condition statement,

then the program will run, so we add the conclusion to the second if statement to the end of

calculate subroutine.

If txtAnimalName.Text = "" Then
 MessageBox.Show("Please input the animal's name")
 End If
 If txtSpecies.Text = "" Then
 MessageBox.Show("Please input the animal's species")
 End If
 If txtAnimalWeight.Text = "" Then
 MessageBox.Show("Please input the animal's weight")
 End If
 If txtPercentDehydration.Text = "" Then
 MessageBox.Show("Please input the percent dehyrdation")
 End If
 If txtAnimalName.Text <> "" And txtSpecies.Text <> "" And txtAnimalWeight.Text <> "" And
txtPercentDeHydration.Text <> "" Then

 ' declare variables
 Dim AnimalName As String

 The Calculate Subroutine ……………

 lblAnesthesiaRateAnswer.Text = AnesthesiaRate.ToString("n2")
 lblDateAnswer.Text = TodaysDate & " " & TimeofDay

 End If

End Sub

 7-30

Figure 9.43 – Condition Statements Checking for Blank Text Boxes

Controlling the Input in the Textbox

Back at the form, we highlight the Animal Weight

textbox. On the Properties window, we will press

the Events button that has a lightning bolt on it. Go

to KeyPress on the list and double click it.

Do the same for the Percent Dehydration textbox.

 Figure 9.44 – KeyPress Event

We will then add yet another condition statement that checks for characters less than 46 or more

than 57 or equal to 47. If this is true then we will launch as message box asking for numbers

only. We use the ASCII chart to find these numbers.

Private Sub txtAnimalWeight_KeyPress(sender As Object, e As KeyPressEventArgs) Handles
txtAnimalWeight.KeyPress
 If Asc(e.KeyChar) < 46 Or Asc(e.KeyChar) > 57 Or Asc(e.KeyChar) = 47 Then
 e.Handled = True
 MessageBox.Show("Please, only input numbers")
 End If
 End Sub

 7-31

 Private Sub txtPercentDeHydration_KeyPress(sender As Object, e As KeyPressEventArgs) Handles
txtPercentDeHydration.KeyPress
 'Allows Only Numbers
 If Asc(e.KeyChar) < 46 Or Asc(e.KeyChar) > 57 Or Asc(e.KeyChar) = 47 Then
 e.Handled = True
 MessageBox.Show("Please, only input numbers")
 End If
 End Sub

Running the Program

After noting that the program is

saved, press the F5 to run the

Infusion Maintenance Application.

The Infusion Maintenance

Application window will appear

on the graphical display as shown

in Figure 9.45. Notice the

professional appearance and

presentation of information in a

clean dialogue box.

 Figure 9.45 – Running the Program using Pounds

 7-32

Type in the Animal’s Name, the

Species type, the Animal’s Weight

and the Percent Dehydration as

shown in figure 9.46. Press the

Calculate command button and the

six answer labels will have the

infusion maintenance answers and

one label will have the date and

time.

 Figure 9.46 – Running the Program using Kilograms

To check the rest of the program,

we will uncheck the default box,

then annotate each of the drop size

radio buttons and calculate the

answers.

 Figure 9.47 – Running the Program using Drop Size

 7-33

We will press the Help button and

the large message box will appear.

We press the OK button to close it.

 Figure 9.48 – The Help Button Message Box

We will press the blue Help label

and the small message box will

appear. We press the OK button to

close it.

 Figure 9.49 – The Help Label Message Box

 7-34

We will press the Print button and

we will print the form.

 Figure 9.50 – The Print Button

We will press the Clear button to

make sure the textboxes and

output labels are emptied.

 Figure 9.51 – The Clear Button

If our program does not function correctly, go back to the code and check the syntax against the

program shown in previous sections. Repeat any processes to check or Beta test the program.

When the program is working perfectly, save and close the project.

There are many variations of this Visual Basic Application we can practice and obtain

information from a personal computer. While we are practicing with forms, we can learn how to

use variables, strings and comments. These are skills that we want to commit to memory.

 7-35

* World Class CAD Challenge 90-9 * - Write a Visual Basic Application that writes a

program that calculates the amount and rate of flow of fluids for dehydrated animals.

Complete the assignment in two hours to maintain your World Class CAD ranking.

Continue this drill four times using some other form designs, each time completing the

Visual Basic Project in less than 2 hour to maintain your World Class ranking.

