
C h a p t e r 6

Visual Basic: While Loop

In this chapter, you will learn how to use the following Visual Basic
functions to World Class standards:

 Understanding a Fibonacci Sequence
 Using a Loop with the Do While Function
 Opening Visual Basic Editor
 Beginning a New Visual Basic Project
 Laying Out a User Input Form in Visual Basic
 Insert a Label into a Form
 Insert a Textbox into a Form
 Inserting more Labels and Textboxes into a Form
 Using a Read Only Textbox with a Vertical Scroll Bar
 Insert Command Buttons into a Form
 Adding a Copyright Statement to a Form
 Adding Comments in Visual Basic to Communicate the Copyright
 Declaring Variables in a Program with the Dimension Statement
 Setting Variables in a Program
 Processing Inside of a Loop
 Resetting the Data
 Exiting the Program
 Running the Program

6-1

Understanding a Fibonacci Sequences

In this program, we will create a form and ask for a starting number and the second number in a
Fibonacci Sequence. We will also ask for the quantity of numbers in the set. When we calculate
the set, we will use a while loop to compute each successive number in the series after the first
two, so this exercise is an excellent opportunity to learn how to execute a while loop. The
answer will be shown in a read only textbox that has a vertical scroll bar.

A Fibonacci Sequence takes the first two numbers (number1 and number2) and adds them
together to make the subsequent number (number3). We write the new number (number3) to the
list. In example, we take 0 and 1 and add them together and we calculate 1. Our new set of
numbers is {0,1,1}. We set the value of number2 to the variable number1 and the value of
number3 to the variable number2. We add number1 to number2 again and assign the quantity to
the variable number3. In our example, we take 1 and 1 and add them together and we compute
2. Our new set is {0,1,1,2}. We continue the process and the sequence looks like the following
set.

{0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610}

As in previous chapters, we will learn new techniques in showing information on a form and to
code the program, so we expect our students to enjoy this chapter.

Using a Loop with the Do While Function

Many years ago, I brought a class of students through the steps of creating while loops in their
computer programs. In that exercise, I had the students create a basement stairs completely from
scratch using a visual program. The problem involved some mathematics, the knowledge of
selections sets, and of course the while loops. I would have to say that most of the students
really struggled through the exercise with me. My approach was too difficult. My challenge was
to find a technique to train powerful programming functions and simultaneously allowing the
programming student to concentrate on coding.

With the next group going through the lesson plan for while loops at the college, I still used a
step with a run of 10 inches in a rise of the 8 inches. We repeated the single step ten times to
construct a simple looking stairs. We drew a ball and bounced it down the stairs using the while
loop. They enjoyed the simplicity of the assignment and went on to make very nice looking
animations. As with engineering students, we want to find a problem that needs to cycle
through a repetitive procedure that they can use. The math students often have to create
Fibonacci sequences, so here is a good program to help them do the math. In our while loop in
Visual Basic, we are going to add two numbers and concatenate the new number to a string.
Sounds pretty effortless and through simplicity we learn how to use another useful tool.

When we are using a Do While Loop function in a Visual Basic, right after the words Do While
we will place a test statement that will be used by the Do While function each time to determine

6-2

whether to enter or exit the loop. In our example and in most of our programs, we will use the
counter. We set the variable counter previously to zero. We know the amount of numbers in
the Fibonacci sequence because we ask for the quantity on the form. The test is simple. We will
stay in the loop as long as the variable counter is less than quantity.

If the quantity is 10 characters long, the first time into the loop the condition is (< 0 13) which
is true so all of the expression inside the while loop will be read in the program. The second
time into the loop the condition is (< 1 13) which is also true so all the loop continues to run.
The third time into the loop the condition is (< 2 13) which is also true and the loop continues.
The fourth time into the loop the condition is (< 3 13) which is also true and this seems to be
going on and on.

In a classroom we go through every step on our first while loop. By this time many students do
not think this will ever end. The thirteenth time into the loop the condition is (< 12 13) which is
also true, because 12 is less than 13. Now on fourteenth time into the loop the condition is (< 13
13) which is false and so the while loop will not execute and the next expression in the code
will be read.

Open the Visual Basic Editor

In this lesson, we will step through each procedure in adding labels, textboxes and command
buttons and we will integrate them into the tutorial along with condition statements, a while
loop and message boxes. As in every project, we will create variables, set their values, use
functions to manipulate the data and output data.

To open a new project, we select File on the Menu Bar and New Project.

Figure 6.1 – The Start Page

6-3

We start a new Windows Application by picking the Windows Application icon from the
installed templates list on the New Project window.

Figure 6.2 – New Project

With the Visual Basic Editor open, select File on the Menu Bar and select Save All. For the
location, we will browse to the folder “Visual Basic Projects” that we made in Chapter 2. We
will name this project “Fibonacci Generator”. A folder called “Fibonacci Generator” will be
made and all the files for the program will be located in the folder.

Beginning a New Visual Basic Application

Remember, that all programming projects begin with one or more sketches. The sketch will
show labels, textboxes, and command buttons. In this project, we will name the input form,
Fibonacci Generator. We will have a label for the input textboxes. We will have a textbox to
key in the first two numbers and the amount of numbers in the sequence. We will have three
command buttons, Calculate, Reset and Exit. On the bottom of the form, we will write the
copyright statement using another label. On this presentation, we can help ourselves by being as
accurate as possible, by displaying sizes, fonts, colors and any other specific details which will
enable us to quickly create the form. On this form, we will use a 12 point Arial font. From the
beginning of inserting the form into the project, we need to refer to our sketch.

6-4

We should train new programmers
initially in the art of form building.
When using the editor, we insert
and size the form, and selecting the
Controls Toolbox, we will place all
the various input tools and properly
label them. Whenever we place an
input tool, the properties window
will display a list of every attribute
associated with the tool, and we
will take every effort to arrange the
tool by performing such actions as
naming, labeling and sizing the
visual input device.

 Figure 6.3 – Sketch of the Fibonacci Generator Form

Figure 6.4 – Designing the Fibonacci Generator Form in Visual Basic

6-5

Laying Out a User Input Form in Visual Basic

We will change the Text in the
Properties pane to Fibonacci
Generator to agree with the sketch
in Figure 6.3. Go ahead and change
the form in two other aspects,
BackColor and Size.

Alphabetic
BackColor LightSteelBlue
Font Arial, 12 pt
Size 405,340
Text Fibonacci Sequence

The first number in the Size is the
width and the second number is the
height. The form will change in
shape to the size measurement.

 Figure 6.5 – Setting the Form Properties

The background color will change to a Light Steel Blue. There are many more attributes in the
Properties pane that we will use on future projects.

In this project, we will select the
font in the form. By selecting the
font, font style and size for the
form, each label, textbox and
command button we insert will
have these settings for their font.

When highlighting the row for
Font, a small command button with
three small dots appears to the right
of the default font name of
Microsoft San Serif. Click on the
three dotted button to open the
Visual Basic Font window.

 Figure 6.6 – The Font Window in Visual Basic

6-6

We will select the Arial font,
Regular font style and 12 size for
this project to agree with the initial
sketch if the user input form. If we
wish to underline the text or
phrase in the label, add a check to
the Underline checkbox in the
Effects section of the Font
window. When we finish making
changes to the font property, select
the OK command button to return
to the work area.

 Figure 6.7 – Changing the Font to Arial

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in Windows; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box.

When the first label is done, the background color of the label matches the background color of
the form. In many cases that effect is visually pleasing to the eye, versus introducing another
color. Both color and shape will direct the user in completing the form along with the
explanation we place on the window to guide the designer in using the automated programs.
Use colors and shape strategically to communicate well.

We will insert our first Label on the
upper left corner of the form and
call the entity lblNumber1.

Alphabetic
(Name) lblNumber1
Text 1st Number

 Figure 6.8 – The Finished Label on the Form

6-7

Inserting a Textbox into a Form

A textbox is used so that a user of
the computer program can input
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox.
To size the label area, click on the
upper left area of the form and
hold down on the left mouse
button, draw the dotted textbox.

 Figure 6.9 – Placing a Textbox on the Form

We will name the TextBox using
the three letter prefix followed by
the name or phrase of the tool. For
our first textbox, the name is
txtNumber1.

Alphabetic
(Name) txtNumber1
BackColor White
Size 82,26

The size of the textbox will be 82
wide and 26 tall and the characters
inside the textbox will be aligned
to the left.

 Figure 6.10 – Setting the Size of the Textbox

6-8

Inserting another Set of Labels and Textboxes into a Form

We will insert another Label to the
right of the textbox and call the
entity lblNumber2.

Alphabetic
(Name) lblNumber1
Text 1st Number

We will insert another textbox to
the right of the label and name the
new textbox, txtNumber2.

Alphabetic
(Name) txtNumber1
BackColor White
Size 82,26

The size of the textbox will be 82
wide and 26 tall and the characters
inside the textbox will be aligned
in the left.

 Figure 6.11 – Adding another Label and Textbox

We will insert another Label
beneath the first label and call the
entity lblNumbers.

Alphabetic
(Name) lblNumbers
Text Numbers in the Sequence

We will insert another textbox to
the right of the label and name the
new textbox, txtQtyNumbers.

Alphabetic
(Name) txtQtyNumbers
BackColor White
Size 82,26

The size of the textbox will be 82
wide and 26 tall and the characters
inside the textbox will be aligned
in the left.

 Figure 6.12 – Adding another Label and Textbox

6-9

Using a Read Only Textbox with a Vertical Scroll Bar

Instead of using a label to show
our sequence of numbers for the
answer, we will use a read-only
textbox. We insert the textbox
beneath the Numbers in the
Sequence label and textbox,
txtQtyNumbers. We call the
textbox, txtSequence.

Alphabetic
(Name) txtSequence
BackColor White
Mulitline True
ReadOnly True
Scrollbar Vertical
Size 360,140
TextAlign Right

 Figure 6.13 – Adding a Read-Only Textbox

We are used to giving the textbox a certain name, size and color. However, in this project, we
would like the output to show at least seven numbers in the list. The vertical scroll bar allows
the user to pan up and down the list of numbers that we are aligning to the right side of the
textbox. We need to be sure that we change the properties and listed above.

Inserting a Command Buttons into a Form

A command button is used so that
a user will execute the application.
Press the Command button on the
Control Toolbar to add a command
button. To size the label area, click
on the upper left area of the form
and hold down on the left mouse
button, draw the command button.
We will name the command button
using the name is cmdCalculate.

Alphabetic
(Name) cmdCalculate
Caption Calculate
Size 106,33

 Figure 6.14 – The Command cmdCalculate Button

6-10

Add a second Command button;
named cmdReset is for clearing
the txtPassword object. The third
command button is to exit the
program. When the user presses
the Exit command button, the
application closes. Notice the
equal spacing between the
command buttons gives a visually
friendly appearance.

 Figure 6.15 – Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to
inform programmers what are the rules dealing with running the code. Comments at the
opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform
someone if they are breaking a copyright law when running the code.

Finish the form with the following
copyright information.

Fibonacci Generator.dv copyright
(c) 2011 by charles robbins

If there are special rules or
instructions that the user needs to
know, place that information on
the bottom of the form.

 Figure 6.16 – Adding a Copyright Statement

6-11

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Hello command button. At the
top of the program and before the line of code with Private Sub cmdCheck_Click (), place the
following comments with the single quote (‘) character. Remember, the single quote character
(‘) will precede a comment and when the code is compiled, comments are ignored.

Type the following line of code:

' Fibonacci Generator.dv copyright (c) 2011 by Charles W. Robbins
' this program will create a fibernacci sequence from two numbers.

Figure 6.17 – Adding a Copyright Statement

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension statement is one of the ways to declare a variable at the procedure level. The other
two ways are the Private and Public statements, which we will use in later chapters.

In our program, we will retrieve the data from the textboxes and also we will create data from
mathematical computations. We will place the values in variables called Number1, Number2,
Number3, Quantity and Counter. These variables will hold numbers for calculations so we will
declare them as Double Integers.

Type the following code under the cmdCalculate subroutine of the program.

 'Declare variable
 Dim Number1 As Double
 Dim Number2 As Double
 Dim Numbers As Double
 Dim Quantity As Double

6-12

 Dim Counter As Double
 Dim Answer As String

Figure 6.18 – Declaring Variables with Dim Statements

Notice that the variable name should be a word or a phrase without spaces that represents the
value that the variable contains. If we want to hold a value of one’s date of birth, we can call the
variable, DateofBirth. The keywords Date and Birth are in sentence case with the first letter
capitalized. There are no spaces in the name. Some programmers use the underscore character
(_) to separate words in phrases. This is acceptable, but a double underscore (__) can cause
errors if we do not detect the repeated character.

Setting Variables in a Program

Next, we will set the variables using the equal function. We will set the numbers in the first
number textbox to the variable Number1 and the second number textbox to the variable
Number2. We place the value of the numbers in the sequence to the variable Quantity. We set
the variable counter to zero for the While loop. In our answer, the first two numbers will of
course be in there, so before we enter the loop to add additional numbers in the set, we put
numbers one and two. We use the Number1.ToString to change the value into a string and we
concatenate the phase with the & sign. Each vbCrLf will start a new line for each number.

Type the following code under the “set variable” section of the cmdCalculate subroutine of the
program.

 'Set variables
 Number1 = txtNumber1.Text
 Number2 = txtNumber2.Text
 Quantity = txtQtyNumbers.Text
 Counter = 0
 Answer = Number1.ToString & vbCrLf & Number2.ToString

6-13

Figure 6.19 – Setting the Variables in the Code

Processing Inside a the Loop

To process the loop, we use the Do While function and after the phrase, we type counter is less
than quantity minus two.

Do While Counter < Quantity - 2

Counter is equal to zero and quantity is equal to the amount of numbers in the Fibonacci
sequence. We subtract 2 from the variable Quantity, because there are already two number in
the sequence that we added in the last section of the code (Number1 and Number2).

When we process inside the Do While Loop, we add the two numbers and concatenate the
Number3 total to the Answer string using this code.

Answer = Answer & vbCrLf & Number3.ToString

After that, we change the variable Number1 to Number2 and Number2 to Number3. We also
add one to the counter. Remember, in Chapter 5, if we do not add one to the counter, the loop
will continue forever. Then we close the Do While Loop with Loop. We can see the whole
procedure shown below.

 Do While Counter < Quantity - 2

 'Process
 Number3 = Number1 + Number2
 Answer = Answer & vbCrLf & Number3.ToString
 Number1 = Number2
 Number2 = Number3
 Counter = Counter + 1

 Loop

6-14

Figure 6.20 – Processing the While Loop

Lastly, will write the sequence to the read-only textbox. The variable Answer is already a
string, so we can write the code as follows.

 'Output
 txtSequence.Text = Answer

To finish the project, we need to code for the Reset and exit buttons.

Resetting the Data

To clear the textboxes or labels containing the data, we will replace the date with blank strings
and the date and time with the current day and time setting.

Type the following code under the cmdReset subroutine of the program

 'Reset the four textboxes
 txtNumber1.Text = ""
 txtNumber2.Text = ""
 txtQtyNumbers.Text = ""
 txtSequence.Text = ""

6-15

Figure 6.21 – Computing the Reset Button by Clearing the Textboxes

Exiting the Program

Figure 6.22 – Exiting the Program

To exit this program, we will unload the application and end the program.
Type the following code:

‘Unload and exit the program
Me.Close()

Written below is the entire Fibonacci_Generator.vbs code for your benefit.

Public Class frmFibonacci
 ' Fibonacci Generator.dv copyright (c) 2011 by Charles W. Robbins
 ' this program will create a fibernacci sequence from two numbers.

Private Sub cmdCalculate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles cmdCalculate.Click
 'Declare variable
 Dim Number1 As Double
 Dim Number2 As Double
 Dim Number3 As Double
 Dim Quantity As Double
 Dim Counter As Double
 Dim Answer As String

 'Set variables
 Number1 = txtNumber1.Text

6-16

 Number2 = txtNumber2.Text
 Quantity = txtQtyNumbers.Text
 Counter = 0
 Answer = Number1.ToString & vbCrLf & Number2.ToString

 Do While Counter < Quantity - 2

 'Process
 Number3 = Number1 + Number2
 Answer = Answer & vbCrLf & Number3.ToString
 Number1 = Number2
 Number2 = Number3
 Counter = Counter + 1

 Loop

 'Output
 txtSequence.Text = Answer

End Sub

Private Sub cmdReset_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles cmdReset.Click
 'Reset the four textboxes
 txtNumber1.Text = ""
 txtNumber2.Text = ""
 txtQtyNumbers.Text = ""
 txtSequence.Text = ""
End Sub

Private Sub cmdExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles cmdExit.Click
 Me.Close()
End Sub

End Class

6-17

Running the Program

After noting that the program is
saved, press the F5 to run the
Fibonacci Generator application.
The Fibonacci Generator window
will appear on the graphical
display as shown in Figure 6.23.
Notice the professional appearance
and presentation of information in
a clean dialogue box.

 Figure 6.23 – Launching the Program

Type “0” for the first number, “1”
for the second number and “5” for
the amount of numbers in the
sequence as shown in Figure 6.24.
If we make a mistake, we can type
over the text entry or press the
Reset command button to clear the
textbox. Press the Calculate
command button and five numbers
in the Fibonacci sequence will be
displayed.

 Figure 6.24 – Running the Program

6-18

Press the Reset command button to
clear the textbox. Type “2” for the
first number, “7” for the second
number and “10” for the amount
of numbers in the sequence as
shown in Figure 6.25. Press the
Calculate command button and ten
numbers in the Fibonacci sequence
will be displayed. We will have to
use the scroll bar to see the entire
list.

To close the program, we press the
Exit command button.

 Figure 6.25 – The Sequence is Calculated

If our program does not function correctly, go back to the code and check the syntax against the
program shown in previous sections. Repeat any processes to check or Beta test the program.
When the program is working perfectly, save and close the project.

There are many variations of this Visual Basic Application we can practice and obtain
information from a personal computer. While we are practicing with forms, we can learn how to
use variables, strings and comments. These are skills that we want to commit to memory.

* World Class CAD Challenge 90-5 * - Write a Visual Basic Application that displays a
single input form, allows the user to type in their data, and when executed, the program
will give the user information obtained from the computer and from mathematical
computations.

Continue this drill four times using some other form designs, each time completing the
Visual Basic Project in less than 1 hour to maintain your World Class ranking.

6-19

