
 2-1

C h a p t e r 2
 

The Boxcircle Program 
 

 
In this chapter, you will learn the following to World Class standards: 
 
 

1. Drawing and Labeling the Boxcircle Programming Sketch 
2. Launching the Visual LISP Editor 
3. Programming in Visual AutoLISP 
4. Loading and Running the AutoLISP Program 

 



 2-2

Drawing and Labeling the Boxcircle Programming Sketch 
_________________________________________________________ 
 
When beginning to create a program using 
Construction Code, the programmer needs to 
draw the basic object, including lines, arcs and 
circles in model space.  Go ahead and use your 
basic mechanical or architectural template so 
you have a dimensioning, centerline and notes 
layer.  Having these different layers in the 
drawing will allow you to easily separate the 
different components of the programming 
sketch, such as object lines, variables in the 
dimensions, the x and y grid and point 
assignments. When one labels a sketch, follow 
some sort of logical rule, like label the 
perimeter of the box in a clockwise rotation. 
(Figure 2.1) Figure 2.1 � Labeling the Points 
  
After showing the five points on the Boxcircle 
detail, go ahead and dimension the drawing 
with the linear dimension tool.  Place a 
dimension from point P1 to P2. By selecting 
the Edit Text tool on the Text toolbar, one can 
change the <> brackets to the word �Width�.  
One can see that when the program is run, the 
user will be prompted for the width of the box. 
Likewise, when dimensioning from point P1 
to P5, one changes in this case the <> brackets 
to �Width / 2� which means this distance will 
be divided in half of the width of the box.  
Now, place a leader with SP for starting point 
at P1, so we know where to start our drawing. 
(See Figure 2.2) 

 Figure 2.2 � Dimensioning the Variables 
 

WCC Warning: Every once in a while, we find a student that will proceed with the program 
without a sketch, but we must warn you that to venture forward without documentation can 
jeopardize the efficiency of an architectural or engineering department since when one opens 
the programming editor and discovers that they cannot figure out what points or variables are 
describing what.  Especially if they did not write the original code.  By having a sketch in the 
programming folder with the same file name as the program, there should be little difficulty for 
anyone picking up on the Construction Code.  Also, this is the first time that we have changed 
an auto-dimensioned piece of text by removing the <> brackets. Do not do this on a production 
drawing. 



 2-3

Next, in 2-dimensional orthographic drawings, 
we have always used the X and Y grid shown 
in every drawing by the UCS icon.  Now we 
are going to show a grid on the Boxcircle 
sketch with a line projecting in the positive X 
and positive Y directions.  Label the lines 
across the bottom in an orderly manner, such 
as X1, X2 and then X3 (Figure 2.3).  After 
completing the X grid series, then proceed to 
the Y grid series, starting with the Y1 at the 
bottom, then Y2 in the middle and finally Y3 
at the top.  A grid is placed on the drawing, so 
when point assignments are made, the coder 
can assign P1 the coordinates (X1, Y1). P2 is 
assigned (X3, Y1). P3 is assigned (X3, Y3). 
P4 is assigned (X1, Y3). P5 is assigned (X2, 
Y2).  When finished labeling the sketch, save 
the drawing as Boxcircle.dwg in your Visual 
AutoLISP programming folder and exit the 
AutoCAD drawing. (Figure 2.4) 
 Figure 2.3 � Placing the X and Y Grid 
  

 
 
Figure 2.4 � The Finished Boxcircle Programming Sketch 



 2-4

Launching the Visual LISP Editor 
_________________________________________________________ 
 
Now to start your first 
engineering program, open a 
new AutoCAD drawing, 
select Tools from the popup 
menu, select AutoLISP, and 
then Visual LISP Editor 
(Figure 2.5). A Visual LISP 
Editor window with a blank 
page will appear in the middle 
of your AutoCAD drawing.   

  
 Figure 2.5 � Launching the Visual LISP Editor 
  

 New File Tool 
The Visual LISP window will 
open on top of the AutoCAD 
Model Space window.  To 
create a new program, select 
the New File tool on the 
Visual LISP Editor toolbar 
(figure 2.6).  Every once in a 
while a new programmer in 
error will start to code on the 
Visual LISP Console window 
which you will see when you 
start the Visual LISP Editor 
and has the _$ symbols at the 
beginning.  
  
 Figure 2.6 � The Visual LISP Editor 
  
  
  
  
  
  
  
  



 2-5

Programming in Visual AutoLISP 
_________________________________________________________ 
 
Every program begins by typing a proper program name as in this case �Boxcircle.lsp� 
followed be a short description of what the program does �- a program that draws a box and 
a circle� (figure 2.7).  Start the line of code with a single �;� semicolon to create a comment 
field shown in a gray shadow. A single semicolon is required to create a comment, but three 
semicolons are considered as a heading or a 0 column comment which appears on a new line, 
without any indentation. 
 
Next, place any special 
instructions in the form of 
comments such as copyright, 
permissions or other legal notices 
to inform AutoLISP programmers 
what are the rules dealing with 
running your code.  A program 
that accidentally or intentionally 
leaves an organization and is 
being used by another is a 
problem.  The alert message is a 
great tool when properly utilized 
to inform someone if they are 
breaking a copyright law when 
running your programs.  
  
 Figure 2.7 � Naming, Describing and Copyrighting 
  
The Alert function will place an 
AutoCAD message in the 
AutoCAD window with an OK 
button to proceed.  If the user 
does not accept the information 
by selecting the OK, then the 
program will not continue.  An 
Alert expression begins with an 
open parenthesis �(� and type the 
function name alert and in this 
case followed by a line of text 
�boxcircle.lsp � copyright 1996 
by charles robbins.  Type bc to 
start�  (Figure 2.8) 
  
 Figure 2.8 � Alert Message 
  
An expression in AutoLISP begins with an open parenthesis, then the function and after 
applying their special purpose a closed parenthesis closes the statement. These parentheses may 
be the source of programming errors as your code grows larger. 



 2-6

Notice that we are using lower case letters in the code.  In some programming languages, they 
are case sensitive, which means that the code will run differently based upon whether the letters 
are upper or lower case.  Visual AutoLISP is not case sensitive and programs can be typed both 
ways and they will work fine.  Lower case text is easier to troubleshoot as the programs become 
larger. 
 

 

Add a new comment  
 
;;;   start program 
 
Then we start the program with 
the defun function, which means 
define function.  Begin with the 
open parenthesis then defun, then 
a c: which will allow the program 
to run on the AutoCAD command 
line.  Next type bc which will be 
the execution symbol to start the 
program.  Remember the alert 
message that stated �type bc to 
start�.  The alert message text and 
the defun symbol must match.  Figure 2.9 � Starting a Program with a Defun Function 
  
The open and closed parenthesis �()�following the bc enclosing nothing means there will not be 
any defined arguments or local variables for this program.  After that, we need to make changes 
to the AutoCAD System Variables that may interfere with the running of the code and 
automatically drawing the lines and circles perfectly. (Figure 2.9) 
  
The programming strategy that 
we will be using in the setup 
portion of the code is to find the 
object snap settings in the 
AutoCAD System Variables, 
which you could check yourself 
manually by going into the 
AutoCAD drawing and typing 
�sysvar� at the command line and 
at the prompt, Enter variable 
name or [?]:, type �osmode�.  A 
whole number or integer will 
return that describes the object 
snap settings presently set in the 
drawing file. 
  
 Figure 2.10 � Drawing Setup 
  
Proper programming etiquette states that when you want to modify a drawing to proceed with 
your program, you need to return the drawing to the same settings at the end of your code.  So 



 2-7

we capture the osnap settings with the code and assign the integer to the variable osm.  Type the 
compound expression which means that there are two or more functions in the line of code.  
Place a single semicolon with the comment shown below after the line of code to inform a 
future programmer of your plans. 
 
Start with a new comment  
 
;;;   drawing setup 
 
And type the code 
 
(setq osm (getvar �osmode�))  ; gets osnap settings and assigns to osm 
 
Next, we will turn off the drawing�s object snaps by setting the system variable �osmode� to 0 
using this line of code.  Add the comment as shown. 
 
(setvar �osmode� 0)                ; turns osnap settings off 
 
Let�s talk about the expression, (setq osm (getvar �osmode�)).  The function setq means set 
quotient and we will use the function to create a variable osm which stands for object snap 
mode, a variable name that we just made up. The variable osm will hold the integer 
representing the �osmode� system variable�s setting.  To get the number use the function getvar 
followed by the name of system variable inside a set of quotes. 
 
To turn off a system variable in many cases in setting the variable to zero.  In the expression, 
(setvar �osmode� 0), the function setvar followed by a system variable inside a set of quotes 
like �osmode� then a 0 will result in turning off the Object Snap settings. 
 
The next step in the Construction 
Code strategy is to request two 
pieces of data required to draw 
this detail, the starting point and 
the width of the box.  These two 
pieces of data are shown on the 
Boxcircle sketch.    
 
Start with the comment  
 
;;;   user input 
 
Then type the following code: 
 
  
 Figure 2.11 � Inquiring about the Starting Point 
 
(setq sp (getpoint �\nPick the starting point    �)) 
 



 2-8

We are again using the setq expression to assign the three point list (X, Y and Z) to the variable 
sp representing the starting point.  We use a new function getpoint (figure 2.11) to allow the 
user to select a point on the AutoCAD display screen.  A programmer has the option, in which 
we have chosen, to add a line of text prompting the user to �Pick the starting point� and we 
also modified the prompt in a small way.  Notice that in front of the capital P in the word Pick, 
a �\n� is added. That will place a question containing those two characters to start on a new 
command line in the AutoCAD program, which allows for a cleaner look to the user when 
answering the questions. 
 
To ask the question, �what is the 
width of the box�, there are a 
couple of changes we will make 
to the compound AutoLISP 
expression, the new variable 
name is width and the get 
function is now changed to 
getreal along with a new prompt. 
Pick any word for a variable name 
as long as the name does not 
match any function names in the 
program.  The getreal function 
will allow the user to type a real 
number at the command line in 
the AutoCAD drawing. 
  
 Figure 2.12 � Inquiring about the Width of the Box 
  
So type the following code: 
 
(setq width (getreal �\nWhat is the width of the box    �)) 
 
If you look at the Visual LISP Editor in figure 2.12, you will notice that we dressed the last two 
expressions so that the questions line up perfectly.  You will pick up on this characteristic when 
the program is running and the typed answers to the questions line up neatly. 
 
Many programmers are very apprehensive about the next section of the code, which is the math 
computations, so in the last two decades we have taught initially trained programmers executing 
their first fifty programs to just skip this section and return to the math.  The math section 
requires the coder to understand a small amount of algebra, where we will calculate a grid 
position using variables and a small amount of constants. After some practice, every 
programmer with whom we have worked has been able to accomplish this section of code 
adequately. 
  



 2-9

One of the easiest sections of 
code for a new or experienced 
programmer to accomplish is the 
point assignments, where one 
assigns X and Y coordinates to 
the point vertexes.  Basically, we 
did the work when we made the 
Boxcircle sketch.  Remember 
when you read that coordinate P1 
is (X1, Y1). P2 is (X3, Y1). P3 is 
(X3, Y3). P4 is (X1, Y3). P5 is 
(X2, Y2) earlier in the chapter.  
Now we write a setq expression 
setting these grid coordinates to 
points p1, p2, p3, p4 and p5. 
  
 Figure 2.13 � Skip the Math 
  

 The list function can create an X, 
Y and Z coordinate by typing the 
appropriate X and Y values after 
the function name.  We do not 
need to add the Z coordinate if the 
value is going to be zero. (Figure 
2.14) 
 
Type the following code: 
 
;;; point assignments 
 
(setq p1 (list x1 y1) 
         p2 (list x3 y1) 
         p3 (list x3 y3) 
         p4 (list x1 y3) 
         p5 (list x2 y2) 
) 

Figure 2.14 - Point Assignments 
 
When automatically drawing any entity in AutoCAD, the programmer uses the command 
function which evokes any AutoCAD standard command. We have to state this rule, since ARX 
commands typed at the command line like Render or Rotate3D need to be executed differently, 
which we will do in later assignments. After the command function is typed, the command 
�line� follows in quotes, then by the point vertexes p1 p2 p3 p4 of the box and finally �c� to 
close the polygon.  
 
Type the following code: 
 
;;; lets draw 
 
(command "line" p1 p2 p3 p4 "c") 



 2-10

Think about how many lines are 
in every architectural and 
mechanical drawing.  When we 
train an individual in creating 
Construction Code, there is a 
transformation that takes place in 
the first four hours from how they 
believed that the goal to automate 
the drawing process to how easy 
this task really is.  How much 
time will be saved in the 
organization and how accurate the 
finished product will be?  
Drawing circles is just as easy. 
  

 Figure 2.15 � Draw the Four Lines of the Box 
  

To have a circle drawn inside the 
box composing of four lines, we 
will use the circle command, the 
next argument is to list the center 
point of the circle which is the 
point vertex, p5, and finally to 
describe the diameter of the circle 
by requesting the diameter with 
the text �d� and the real number 
representing the diameter in the 
variable width.  All of this is 
brought to together with the 
following expression. 
 

(command "circle" p5 "d" width) 
  

 Figure 2.16 � Draw the Circle 
  

To end the program, we will set 
the object snap mode back to the 
original settings by using the 
setvar function followed by the 
variable osm which holds the 
original integer containing the 
Osnap settings.  Type the 
following code. 
;;;     end the program 
 
(setvar "osmode" osm)    
; turns osnap settings back on 
)  
  

 Figure 2.17 � End the Program 



 2-11

Now, we will return back to the 
middle of the program and finish 
the math section of the code.  
Again the setq function is the 
choice for assigning values to the 
variables X1, X2, X3, Y1, Y2 and 
Y3.   
 
The car function is used with 
variable sp (the starting point) to 
extract the x-coordinate of the 
starting point list.  If the starting 
point is (4, 3, 0) then (car sp) will 
return as 4 and be assigned to the 
variable X1. So the car function 
returns the first number in the list. 
 Figure 2.18 � Do the Math 
  
Likewise, the cadr function is used with variable sp (the starting point) to extract the y-
coordinate of the starting point.  Again, if the starting point is (4, 3, 0) then (cadr sp) will return 
as 3 and be assigned to the variable y1. So the cadr function returns the second number in the 
list. 
 
That explains the use of car and cadr to find the coordinates x1 and y1, now we have to 
continue down the X grid to obtain values for x2 and x3.  To obtain the x2 coordinate, use the 
addition function + to add to the x1 value.  To get the number to add to the x1, we have to 
divide width by two using the divide function / like so. Notice that the function is written first, 
followed by the numerator width and then the denominator 2.0. 
 

(/ width 2.0) 
 

And place that expression in the addition expression to build a compound expression. 
 

(+ x1 (/ width 2.0)) 
 

Now assign the value to x2 
 

x2 (+ x1 (/ width 2.0)) 
 
To find x3, we have a single addition expression where we add the variable width to x1 using 
the function +. 

(+ x1 width) 
 

Now assign the value to x3 
 

x3 (+ x1 width) 
 



 2-12

Repeat the coding process with the y-coordinates y2 and y3; making sure your code appears as 
below. 
 

(setq x1 (car sp) 
         x2 (+ x1 (/ width 2.0)) 
         x3 (+ x1 width) 
         y1 (cadr sp) 
         y2 (+ y1 (/ width 2.0)) 
         y3 (+ y1 width) 
) 

 
Now that the program is finished, double check your typing with the text in this manual and 
then save your program to your folder named �Visual LISP Programs�. Now back in the 
AutoCAD program, select Tools, and Load Application (figure 2.18) to open the Load / Unload 
Application window.  
 
Loading and Running the AutoLISP Program 
_________________________________________________________ 
 

 

Figure 2.19 � Starting to Load the Application 



 2-13

Make sure the Look in list box is 
displaying the Visual LISP 
Programs folder and then select 
the program �boxcircle� and press 
the Load button.  At the bottom � 
left corner of the Load / Unload 
Applications window you will see 
a small text display that was blank 
initially but now displays the text, 
�boxcircle.LSP successfully 
loaded.� (Figure 2.20) 
 
After noting that the program is 
loaded, press the Close button and 
now when you are in the 
AutoCAD program, an AutoCAD 
message window appears in the 
middle of the graphics display 
stating: �boxcircle.lsp � copyright 
1996 by charles robbins.  Type bc 
to start�    
  
 Figure 2.20 � The Load / Unload Applications Window 
 

 
 

Figure 2.21 � When the Program Loads an AutoCAD Message Appears. Press OK. 



 2-14

Press the OK button if you agree 
with the message and follow your 
own instructions by typing bc at 
the command line.  The message 
�Pick the starting point� appears 
on the command line and the user 
should select a point at the lower 
left hand corner of the AutoCAD 
graphics display.   

  
 Figure 2.22 � Picking the Starting Point 
  
After the picking the starting 
point, the user will be prompted, 
�What is the width of the box?� to 
which we answered on the 
command line with 4.  (Figure 
2.23).  After entering the 4 and 
pressing Enter, the program will 
draw four lines in a square and 
place a circle in the middle of the 
box that is tangent to all four 
sides.  Congratulations, you have 
completed your first AutoLISP 
program.  

  
 Figure 2.23 � Typing the Width of the Box 
  
  
  
  



 2-15

 
Figure 2.24 � The Finished Drawing 
 


