
 10-1

C h a p t e r 10

Creating a Motion
Program for Animations

In this chapter, you will learn how to use the following AutoLISP
functions to World Class standards:

1. The Advantage of Using While Loops and Animation Code
2. Starting the Motion Code by Launching the Visual LISP Editor
3. Learning to Use Selection Sets
4. Using a While Loop in a LISP Routine
5. Moving an Entity in a LISP Routine
6. Copying Code and Making Changes
7. Adding a While Loop and Nesting Loops

 10-2

The Advantage of Using While Loops and Animation Code

Many years ago I brought a class of students through the steps of creating while loops in their
computer programs. In that exercise, I had the students create a basement stairs completely from
scratch using Visual AutoLISP. The problem involved some mathematics, the knowledge of
selections sets, and of course the while loops. I would have to say that most of the students
really struggled through the exercise with me. My approach was too difficult. My challenge was
to find a technique to train powerful programming functions and simultaneously allowing the
programming student to concentrate on coding.

The next group going through the lesson plan for while loops, I still use a step with a run of 10
inches in a rise of the 8 inches. We repeat the single step ten times to construct a simple looking
stairs. As you learned and chapter one, I never waste a student�s time by writing a routine that
they would put away and never use the code again. Initially this problem appears to be too
simple to have any practical application. The next step in the lesson plan is to draw a seven inch
diameter circle on the midpoint of the top step. My question to the class and the essence of the
exercise is to bounce the ball down the stairs and to create the 3D animation to present at the
conclusion of the lesson.

Since that day my students modify and enhance motion code to create fly around animations of
buildings and product. After making three dimensional structures, they again use their motion
scripts to make walkthrough animations without having to purchase a third party software
package.

So in this exercise, we need to begin by drawing a single step as shown in Figure 10.1. Select
the Line tool on the Draw toolbar and pick a point on the upper left corner of the graphical
display, draw a line 10 inches to the right and a second line 8 inches down. Press Enter to close
out the Line command. Now pick the Copy tool on the Modify toolbar, select the first two lines
and press Enter to proceed to the second part of the Copy command. At the command prompt,
specify based point or displacement or multiple, we are going to choose the multiple option.
After typing �M� for multiple, pick the left Endpoint of the horizontal line for your base point.
Now you copy the horizontal and vertical lines ten times by picking the lowest Endpoint of the
vertical line. After adding nine steps, draw two additional lines to create the finished stairs as
shown in Figure 10.2.

Figure 10.1 � The First Step Figure 10.2 � The Finished Stairs

 10-3

Select the Circle tool on the Draw toolbar and
pick the Midpoint point on the upper
horizontal line. Type 3.5 for the radius of the
circle. Now pick the Move tool on the Modify
toolbar, select the first circle and press Enter
to proceed to the second part of the Move
command. At the command prompt, specify
based point or displacement or multiple, we
are going to choose the south Quadrant of the
circle and at the second point of displacement,
pick the Midpoint of the top horizontal line.
The ball will appear as shown in Figure 10.3.

 Figure 10.3 � Adding a Ball

Go ahead and save the file in your Visual AutoLISP folder, naming the file, Stairs. As in normal
drawing practices, saving the file is critical to retain information and not to lose time drawing
the same entity twice. By saving the Stairs drawing with the ball at the top step, we will find the
process easy to reset when testing the code you are going to write in this chapter.

The strategy we will use in the programming code is to automatically select the ball, and move
the entity to the right, stopping at each increment to take a picture. The question is �what is the
distance we need to move to the right for each picture?� we can determine that by knowing a
little bit about motion and about film. For a practical exercise, take a ball and roll the ball down
a certain number of stairs timing the motion with a secondhand. The ball rolls and

When you watch a Saturday morning cartoons, the animator can show their film at twelve
frames per second for very rough looking presentations. On the other side of the animation
quality scale we have companies producing presentations at 28 frames per second for very fine
displays. After timing a ball rolling down a stairs, we found that the ball took 8 seconds to
descend. We choose 12 frames per second for our first animation so we are planning for around
96 frames. With 96 frames divided by 10 steps, we figure 9.6 frames per step. By simple math
we decide to move the ball 5 times at 2 inches each displacement to clear the 10 inch step, then
4 times at 2 inches down to reach the next step. This will give us an equal displacement of 2
inches for each movement and a total of 90 frames in the movie. This is very close to the 96
frames we were planning on using from our actual experiment. When we finish the animation,
we will see a presentation that closely represents what would be believable. That is important
when bouncing a ball down a stairs or walking through a building in an animation.

In this program, we will use three while loops, a horizontal movement while loop, a vertical
movement while loop, and finally a while loop that will repeat the process for ten steps. As you
can see in Figures 6.4, the first while loop will the move the ball in a horizontal motion five
times in 2-inch increments to the right, taking a picture in each time. The next vertical while
loop, we will capture the vertical movement of the ball moving downward four times in two
inch increments as shown in Figure 10.5.

The third loop will take the ball down all ten stairs. We will accomplish this assignment by
nesting the first two loops inside the third loop. We need to proceed to see how this is done.

 10-4

Figure 10.4 � Moving the Ball to the Right Figure 10.5 � Moving the Ball Down

Starting the Motion Code by Launching the Visual LISP Editor

Open the Visual LISP Editor
and on the first line type the
comment

;;; motion1.lsp

The program name is always
on the first line of the code.
The semicolons cause the
statement to become a
comment so the line of code
will not be read.

 Figure 10.6 � Starting the Motion Program

The next line or lines in the
program will be the details
concerning what the routine
will do. In this program,
there are comments after
almost every line of code.
Follow the information
provided and type the
comments where needed.
After a few programs, we
will always remember to add
comments.

 Figure 10.6 � Adding Comments

 10-5

The copyright statement is
the next line of code with the
actual word copyright, the
year initially written and the
full and legal name of the
author. If you make a change
the next year, the copyright
statement would say

 Figure 10.7 � Adding the Copyright Statement

Next we will create an
AutoCAD Message by
taking the information listed
in the comments and placing
the text in the alert function.
On the first line of the alert
expression, the program and
the copyright information is
keyed.

 Figure 10.8 � Adding the Alert Expression

Add a new comment

;;; start the program

Then we start the program
with the defun function,
which means define function.
Begin with the open
parenthesis then defun, then
a c: which will allow the
program to run on the
AutoCAD command line.

 Figure 10.9 � The Defun Expression

Next type m1 which will be the execution symbol to start the program. Keep in mind the alert
message that stated �type m1 to start�. The alert message text and the defun symbol must
match. The open and closed parenthesis �()�following the m1 enclosing nothing means there
will not be any defined arguments or local variables for this program. After that, we need to
make changes to the AutoCAD System Variables that may interfere with the running of the
code and automatically drawing the lines and arcs perfectly.

 10-6

Learning to Use Selection Sets

To automatically obtain the
ball without picking the circle
with the mouse, use the ssget
�x� function. This is a very
powerful tool in the list of
Engineering programming
functions. In many programs,
the writer will just obtain
information from a user�s
input at the keyboard or from
a specific field in a database.

 Figure 10.10 � The Filtered Selection Set Expression

The ssget function will extract information from any AutoCAD drawing no matter where that
entity resides. If we use the ssget function and select all the entities with the expression shown
below.

(setq ss1 (ssget �A�))

Then every entity is places in a list called ss1 and we can pull that list apart to obtain data. This
is not as efficient as using a filter where initially our list will only contain a smaller amount of
pertinent information. Therefore we learn to use the ssget �x� function where we can filter all
the records except what is listed at the end of the expression. In our movie program we write

(setq ss1 (ssget "x" '((8 . "ball�))))

After the ssget �x�, we write '((8 . "ball�)) which describes the filter we desire. The number 8
is a group code which means layer name. All AutoCAD entities have data broken down into
logical data fields such as entity name, layer name and insertion point. The text "ball�
describes the name of the layer we are searching for entities. In the movie, the only entity
residing on the ball layer is the circle that we are moving, so the ssget function will select the
ball no matter where the object is located.

Before we continue to another
expression, we need to take the
time to understand the
selection set function and how
AutoCAD controls the drawing
database. We can do this by
drawing a single line on the
graphical display. So go ahead
and draw a single line as
shown in Figure 10.11.

 Figure 10.11 � A Single AutoCAD Line Entity

 10-7

At the command line type the expression listed below. Notice that the group code is now 0,
which stands for entity type and the category we want is "line�.

(setq ss1 (ssget "x" '((0 . "line�))))

The AutoCAD program will return with comment on the command line with <Selection set:
4>. Anytime we capture a data in a selection set we will notice the number changing. To
determine the quantity of entities in the selection set type the following code at the command
line.

(setq quantity (sslength ss1))

We are using quantity as the variable name. The AutoLISP function sslength returns the
number of entities in the selection set ss1. The command line will come back with 1. The
sslength function is important when we use a while loop to sort through a selection set
automatically. Next type the following expression on the command line.

(setq entityname (ssname ss1 0))

We are using entityname as the variable name. The AutoLISP function ssname gives the name
of an entity of the first item in the selection set ss1. The command line will come back with
<Entity name: 7ef60e98>. An AutoCAD name has eight digits that can have 0 through 9 or A
to Z in each digit. In a selection set, AutoCAD starts counting with the number 0, so we have to
remember to always start our counts in a program at zero and not one when using the ssname
function. Now type the following expression on the command line.

(setq entitylist (entget entityname))

We are using entitylist as the variable name. The AutoLISP function entget will return the
entire database list that describes the line entity on the graphical display and the first item in the
selection set ss1. The command line will come back with following data. Your data will be
different since your line is in a different location.

((-1 . <Entity name: 7ef60e98>) (0 . "LINE") (330 . <Entity name: 7ef60cf8>)
(5 . "8B") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0") (370 . 30)
(100 . "AcDbLine") (10 10.4573 9.24445 0.0) (11 27.8159 20.2655 0.0) (210 0.0 0.0 1.0))

For many AutoCAD expert operators this is a time of great discovery. The AutoCAD drawing
file has header information which contains information regarding how to set up the environment
for the actual drawing and then comes a complete collection of records which contain the data
for every drawing entity which you see in the drawing. The AutoCAD file is actually three
dimensional database. In later projects we will turn the monitor off and without any mouse or
keyboard entries we will still draw in AutoCAD using a LISP program. For architectural and
engineering experts, they finally see some computer and design power, and not drawing or
designing everything manually.

Every data field inside of each set of parenthesis begins with a group code. There is a table of
group in Appendix Z in this textbook. Common group codes that we use to extract data all the
time are in the table below.

 10-8

0 Entity Type
1 Text
2 Block Name
8 Layer Name
10 Start or Insertion Point
11 End Point

We will use selection sets in most of our programs, so this is good time spent reviewing what a
single data record looks like in AutoCAD. Later we will learn how to extract starting and
ending points of lines, and change text or blocks in a drawing automatically. All of these
capabilities are made possible with a great understanding of selection sets, the functions that
allow us to read the data, and finally the functions which will enable us to change the entity
automatically without using a keyboard and mouse.

In the motion program, the selection set contains just that single entity, the circle. Anytime we
wish to move the circle, we just call out the selection set ss1. Notice in the example shown
below, we could have typed (ssget �x� �(0 . �circle�)))) in the program and achieved the same
result. In our program, we know there is only a single circle on the ball layer. We normally do
not use entity type selections in motion programs since a designer may want to use circles in
their drawing and the program may automatically select the wrong circle. The dedicated layer is
an obvious choice for motion code.

Function Name Description

ssget �x� Obtain a Selection Set Using
a Filter

Will automatically select
entities using a filter such as
layer name, entity type like
circle.

Examples

Using layers (ssget �x� �(8 . �ball�)))) Selection Set: 7
Using entity (ssget �x� �(0 . �circle�)))) Selection Set: 9

The next expression in the
motion program will set the
variable for each file name
where each frame is written.

(setq filename 1000)

We normally start with 1000
since the all of the frames
will align in perfect
numerical order when
automatically placing them
into an animation program.

 Figure 10.12 � Declaring the Filename to be 1000

 10-9

When you write a file representing each frame starting with 1 and on up then the files will not
be in order when you place them in an animation program. You will have files listed as 1, 10,
11, 12 �.. 19, 2, 20, 21. You can avoid this problem by using 1000 when you want up to 999
frames in the movie.

Using a While Loop in a LISP Routine

The comment for starting the
horizontal movement is
added and before we start
any while loop, we need to
set a condition to control the
loop and in this case we will
set a counter before entering
the while loop. Using the
setq function, we type the
expression below to start the
loop at zero.

(setq counter1 0)

 Figure 10.13 � Starting the Horizontal Loop

The next expression is the
code is the entrance to the
while loop.

(while (< counter1 5)

A condition statement trails
the while function. Since the
step is 10 inches in depth and
the circle needs to travel that
distance to clear the step.

 Figure 10.14 � Placing the While Loop Expression

We are moving the circle 2 inches in every displacement and with 5 loops in the while function,
which means 2 times 5 equals 10. In this instance the condition function is the less than symbol,
<. A while loop will run anytime the condition set returns a true response in the code. The first
time into the loop the condition is (< 0 5) which is true so all of the expression inside the while
loop will be read in the program. The second time into the loop the condition is (< 1 5) which is
also true so all the loop continues to run. The third time into the loop the condition is (< 2 5)
which is also true and the loop continues. The fourth time into the loop the condition is (< 3 5)
which is also true and this seems to be going on and on. In a classroom we go through every
step on our first while loop. By this time many students do not think this will ever end. The fifth
time into the loop the condition is (< 4 5) which is also true, because 4 is less than 5. Now on
sixth time into the loop the condition is (< 5 5) which is false and so the while loop will not
execute and the next expression in the code will be read.

 10-10

Notice that the expression below does not contain an ending parenthesis for the while function.

(while (< counter1 5)

The ending parenthesis comes at the end of the list of expression inside of the while loop.

Function Name Description

While While Loop
Will automatically select entities
using a filter such as layer name,
entity type like circle.

Examples

Using a counter (while (< counter 5)

)

Will continue 5 times

Using a question (while (= ball �y�)

)

Will continue as long as ball equals
�yes�

Moving an Entity in a LISP Routine

Now we want to move the
circle 2 inches to the right.
We use the command
function to start the process.
Now since the AutoCAD
command is �move�, that
comes next in the expression.
The ss1 variable contains the
circle so we will list that next
for the select objects part of
the Move command.

 Figure 10.15 � Move the Ball Horizontally to the Right

Now that we have the circle in the Move command�s selection set, the double quotes �� means
Enter so we are now in the next part of the Move command concerning displacement. The �@�
symbol will pick a point on the graphical display. The �@2,0� will move the circle 2 inches to
the right. The entire expression is shown below.

(command "move" ss1 "" "@" "@2,0�)

Obviously the Copy command would run the same way as the Move command.

 10-11

Function Name Description

Command �Move� Move Command
Will move an entity in an
AutoCAD file based upon
the displacement criteria

Examples
Moving a single selection set
or a single entity using
relative coordinates

(command "move" ss1 "" "@" "@2,0�) Moves ss1,
2 inches to
the right

Moving multiple selection
sets or two entities using
relative coordinates

(command "move" ss1 ss2 "" "@" "@2,0�) Moves ss1
and ss2,
2 inches to
the right

Moving a single selection set
or a single entity using a
starting point pt1 as the base
point and pt2 as the second
point of displacement

(command "move" ss1 "" pt1 pt2) Moves ss1
The same
distance as
from pt1 to
pt2

The next expression in the
code will save the bitmap
image of the graphical
display to file. The saveimg
function needs to have the c:
to the beginning of the
command since this is an
ARX command. Notice that
when we type Saveimg or
Rotate3d at the command
line, the AutoCAD program
loads the ARX function.

 Figure 10.16 � Save the Image of the Graphical Display

After the c:saveimg, we need to call out the file name. The variable filename contains an
integer, so we will convert the integer to a text string using the itoa function.

(c:saveimg (itoa filename) "bmp")

The itoa function is just one function that will change an integer to a text string. There are
functions that convert between all of the different types of variables in AutoLISP. A variable
can be a real number like 1.0, an integer like 1, a list like (1) or a text string like �1�. There are
AutoLISP functions that will allow the code writer to change between any of the four types of
variables.

The last part of the expression tells the saveimg function what type of graphic file you wish to
have. There are three choices for our graphical image: Bitmap (bmp), TGA (tga) and TIFF
(tiff). We choose the Bitmap image to easily use in our animation program.

 10-12

Now when we write the frames to files they will be in the same folder with the drawing file that
we have our drawing file of the stairs.

Function Name Description

itoa Integer to a String
Will convert a whole
number (integer) to a text
string

Example
Change a integer represented
by the variable filename to a
text string

(itoa filename) Moves ss1,
2 inches to the right

Change a integer 1000 to a
text string �1000�

(itoa 1000) Changes 1000 to �1000�

Function Name Description

c:saveimg Save Image

Will create a
graphical image file
of the graphical
display

Example
Makes a Bitmap image of the
graphical display

(c:saveimg (itoa filename) "bmp") Returns SAVEIMG
Save Image done!

Makes a Bitmap image of the
graphical display

(c:saveimg (itoa filename) "tga") Returns SAVEIMG
Save Image done!

Makes a Bitmap image of the
graphical display

(c:saveimg (itoa filename) "tiff") Returns SAVEIMG
Save Image done!

The next expression we will
place in the code will add
one to the variable filename.
We will use the 1+ function
to add 1 to the 1000, so the
variable filename will now
be 1001.

(setq filename (1+ filename))

 Figure 10.17 � Add One to the Filename

In chapter four, we discover that we can use the 1+ function to add one to a counter or we can
utilize the 1- to remove one from a counter.

 10-13

The next expression we will
place in the code will add
one to the variable counter1.
We will use the 1+ function
to add 1 to the 0, so the
variable counter1 will now
be 1.

(setq counter1 (1+ counter1))

 Figure 10.18 � Add One to the Loop Counter

Now we can add the final parenthesis to the end of the while loop under the last expression. The
entire while loop is shown below.

;;; horizontal movement loop

(setq counter1 0) ; set counter to 0
(while (< counter1 5) ; 5 increment loop
 (command "move" ss1 "" "@" "@2,0�) ; move ball 2in. to right
 (c:saveimg (itoa filename) "bmp") ; save file as a bitmap
 (setq filename (1+ filename)) ; add one to the filename
 (setq counter1 (1+ counter1)) ; add one to the counter
)

Copying Code and Making Changes

Now you already know that
we can make syntax errors in
AutoLISP, so if we check the
horizontal movement while
loop and know that the
expressions are correct, we
can highlight the nine lines,
which include comments,
then right click in the
highlighted area to read the
menu choices. Select Copy
from the menu as shown in
Figure 10.19.

 Figure 10.19 � Copy the While Loop to Create Another

Now place the cursor two spaces below the last expression and right click with the mouse.
Select Paste and a copy of the first while loop will now be placed in the routine.

 10-14

In the comment, change the
word �horizontal� to
�vertical� as in Figure 10.20.
In this while loop the circle
needs to go down an eight
inch step. We are moving the
circle 2 inches down in every
displacement and with 4
loops in this while function,
means 2 times 4 equals 8.
Other than the condition
statement in the while loop
and the direction of the circle
moving, both of the while
loops are identical.

 Figure 10.20 � Changing a Comment in the Vertical Loop

In the vertical movement
loop, change the condition
statement from a �5� to a �4�
as shown below.

(while (< counter1 4)

Change the comment field to
4 increment loop.

 Figure 10.21 � Changing the Condition Statement to 4

Now we want to move the
circle 2 inches down. To
review, the ss1 is the
selection set containing the
circle, the double quotes ��
means Enter so we are now
in the next part of the Move
command. The �@� symbol
will pick a point on the
graphical display. The �@0,-
2� will move the circle 2
inches downward. Change
�@2,0� to �@0,-2�. Do not
forget to change the
comment field.

 Figure 10.22 � Move the Ball Down Two Inches

 10-15

To end the program, we will
need to place a parenthesis at
the end of the code to close
the defun c:m1 function.
Type the following code.

;;; end the program

)

 Figure 10.23 � Move the Ball Horizontally to the Right

Now that the program is
finished, we need to double
check our typing with the
text in this manual and then
save our program to our
folder named �Visual
AutoLISP Programs�.

Make sure the Look in list
box is displaying the Visual
LISP Programs folder and
then select the program
�motion1� and press the
Load button. At the bottom
� left corner of the Load /
Unload Applications window
you will see a small text
display that was blank
initially but now displays the
text as shown in Figure
10.24,

�motion1.LSP successfully
loaded�

 Figure 10.24 � Move the Ball Horizontally to the Right

After noting that the program
is loaded, press the Close
button and now when you
are in the AutoCAD
program, an AutoCAD
message window appears in
the middle of the graphics
display stating: �motion1.lsp
� copyright 1997 by charles
robbins. Type m1 to start�

 Figure 10.25 � Move the Ball Horizontally to the Right

 10-16

Press the OK button if you agree with the
message and follow your own instructions
by typing m1 at the command line. The
circle will move 10 inches to the right and 8
inches down to the second step and stop.
Our graphical display should appear as
shown in Figure 10.26. If the ball moved as
shown, continue with writing the third while
loop. If not we must troubleshoot the code
to find the error against the entire code
shown at the end of the chapter.

 Figure 10.26 � Move the Ball Down One Step

Adding a While Loop and Nesting Loops

The comment for starting the
stair while loop is added
right below the (setq
filename 1000) and before
we start any while loop, we
need to set a condition to
control the loop and in this
case we will set a counter
before entering the while
loop. Using the setq function,
we type the expression below
to start the loop at zero.

(setq staircounter 0)

 Figure 10.27 � Add Another Counter Expression

The next expression is the
code is the entrance to the
while loop.

(while (< staircounter 10)

A condition statement trails
the while function. Since
there are ten steps in the
stairs, this while loop will
contain a condition statement
that allows for ten loops in
the while function.

 Figure 10.28 � Add the While Loop for 10 Stairs

 10-17

The next expression we will
place in the code will add
one to the variable
staircounter. The expression
will be written after the
second while loop as shown
in Figure 10.29. We will use
the 1+ function to add 1 to
the 0, so the variable
staircounter will now be 1.

(setq staircounter (1+
staircounter))

 Figure 10.29 � Add One to the Staircounter

Now we can add the final
parenthesis to the end of the
third while loop under the
last expression. The entire
while loop is shown below.
Now the first two while
loops are nested inside the
third while loop. In a single
incremental loop in the third
while loop, the circle will go
ten inches to the right and
then eight inches down.

 Figure 10.30 � Add a Closing Parenthesis to the Third Loop

Now, the first time around the loop the
condition is (< 1 10) which is true so all of
the expression inside the while loop will be
read in the program. This will continue into
the tenth time into the loop the condition is
(< 9 10) which is also true, because 9 is less
than 10. Now on eleventh time into the loop
the condition is (< 10 10) which is false and
so the while loop will not execute and the
next expression in the code will be read,
which is the end of the program. Now save
the program, load the motion1.LSP
application and run the code by typing m1
at the command line.

 Figure 10.31� Move the Ball Down the Stairs

 10-18

Written below is the entire motion1.LSP code for your benefit.

;;; motion1.lsp
;;; a program that moves a ball down 10 stairs
;;; copyright 1997 by charles w. robbins

(alert "motion1.lsp - copyright 1997 by charles w. robbins. type m1 to start")

;;; start the program

(defun c:m1 (/)

;;; select the ball

(setq ss1 (ssget "x" '((8 . "ball�)))) ; select the ball
(setq filename 1000) ; start saving files at 1000

;;; stair while loop

(setq staircounter 0) ; set staircounter to 0
(while (< staircounter 10) ; 10 increment loop

;;; horizontal movement loop

(setq counter1 0) ; set counter to 0
(while (< counter1 5) ; 5 increment loop
 (command "move" ss1 "" "@" "@2,0�) ; move ball 2in. to right
 (c:saveimg (itoa filename) "bmp") ; save file as a bitmap
 (setq filename (1+ filename)) ; add one to the filename
 (setq counter1 (1+ counter1)) ; add one to the counter
)

;;; vertical movement loop

(setq counter1 0) ; set counter to 0
(while (< counter1 4) ; 4 increment loop
 (command "move" ss1 "" "@" "@0,-2�) ; move ball 2in. down
 (c:saveimg (itoa filename) "bmp") ; save file as a bitmap
 (setq filename (1+ filename)) ; add one to the filename
 (setq counter1 (1+ counter1)) ; add one to the counter
)

(setq staircounter (1+ staircounter)) ; add one to the staircounter
)

;;; end of program

)

