Chapter 6B

Visual C# Program:
Simple Game 2

In this chapter, you will learn how to use the following Visual C#
Application functions to World Class standards:

Opening Visual C# Editor

Beginning a New Visual C# Project

Laying Out a User Input Form in Visual C#

Inserting a Label into a Form

Adding a PictureBox in Visual C#

Adding Comments in Visual C# to Communicate to Others
Declaring Variables in a Program with the Int Statement
Setting Variables in a Program

Adding a Timer to the Program

Programming for the Timer

Running the Program

6B-1

Open the Visual C# Editor

In this lesson, we will write our second game, which allows two players to try to get the ball by
their paddle. We will take much of the code from the previous lesson, but we will practice
writing new condition statements for the extra objects. At the beginning of the game, the player
will launch a ball from their paddle and the other contestant will try to keep the ball from
passing the imaginary line just equal to their paddle. If it does, the sending player will gain a
point. When one player gets a total of five points, they win and the game over text will appear
and the game will conclude.

To open this new project, we select File on the Menu Bar and New Project.

File Edit View Debug Teamn Data Tools Test Window Help
- Sd@ | aB - a5 -| | 5 5 O B8 56 Bl <

W Start Page X ~ Solution Explorer

Micrpsoft: .
OB Visual Studio 2010 Professional

+ Get Started = Guidance and Resources = Latest News
g Connect To Team Foundation Server

Welcome Windows Web Cloud Office SharePoint Data
,»-‘I New Project...

—
[Open Project.. Totemoo—- ¥ What's New in Visual Studio 2010

3 - Learn about the new features included in this
release.

Recent Projects

Visual Studio 2010 Overview
WindowsFormsApplication] What's New in .MET Framework 4
What's New in Visual Basic

fig]
! Bouncing Ball Customize the Visual Studic Start Page

Creating Applications with Visual Studio

— = Extending Visual Studio

= Community and Learning Resources

Close page after project load
Show page on startup

E‘g Solution E... [i RECTLE=1TN

Figure 6B.1 — The Start Page

To open a new project, we select New Project on the left side of the Start Page.

6B-2

IR

N Project
el - - — - . -
Recent Templates MET Framework 4 |Sor‘t by: [Default - | | Search Installed Templates 2 |
Installed Templates T Visual C#
)) E‘cﬁ Windows Forms Application Visual C# ype: Visuails
4 Visual C= = A project for creating an application with a
Windows = Windows Forms user interface
Web .,Cﬁ WPF Application Visual C#
Office
Cloud =oth Console Application Visual C#
Reporting —
SharePoint ;qcﬁ Class Library Visual C&
Silverlight
Test mcﬁ WPF Browser Application Visual C#
WCF
Workflow ch| Empty Project Visual C#
Other Languages
Other Project Types —ch| Windows Service Visual C#
Database 4
| Test Projects .))
QE#‘# WPF Custom Control Library Visual C#
qi#fi WPF User Control Library Visual C#
ECﬁ Windows Forms Control Library Visual C#
Name: Simple Game Program
Location: G\wiee visual ¢ sharp\Projects\Simple Game Program?, - Browse... |
I Solution name: Simple Game Program Create directory for solution
|| Add to source control

Figure 6B.2 — New Project

We start a new Windows Application Project by picking the Windows under Visual C # in the
left pan of the New Project window. Then we pick Windows Form Application in the center
pane.

At the bottom of the Window, we name the project, Simple Game Program 2. We make a folder
for our projects called Visual C Sharp on the desktop, on our flash drive or in the Documents
folder. We make another folder inside the first called Simple Game Program 2. On the New
Project window, we browse to the Simple Game Program 2 location. The solution name is the
same as the project name.

Beginning a New Visual C# Application

Remember, that all programming projects begin with one or more sketches. The sketch will
show labels and pictures. In this project, we will name the input, Simple Game. In this
application, we will just have a form.

6B-3

We will write code that moves a
maroon ball from the middle right
starting at the 500,200 location. We
will displace the ball 1 pixel to the
right and 1 pixel up for each tick of
time on the timer. We will have a
vertical image for a paddle to stop
the ball from going by us. We will I I
]

a:! Simple Game EI@
Player 1 Player 2

(o] Ricocdet (o

add a label for keeping the score.
We will gain a point for every time
the ball goes by our opponent’s
paddle. When that occurs, the
player that won the point will serve
another ball. The name of the game
and the title of the score boxes are b
in three labels.

Figure 6B.3 — Sketch of the Simple Game Form

When one player gets a total of five points, they will the win and the game over text will appear
on the bottom of the window. The game will conclude.

f bl
&0 Simple Game 2 Program - Microsoft Visual Studio . =Ny X

File Edit View Project Build Debug Team Data Format Tools Test Window Help
Plv G a6]9 - ® - D5 b [Debug | (486 ~| |13 | simplegame R e g

HES S I ENCIE Ny T e Ryl O e I O B = ST B e R =

frmSimpleGame2.cs [Design]™ X ~ Solution Explorer * 1 x
S aEEE S
o= Simple Game 2 EI@ 4 Solution 'Simple Game 2 Program’ (L pre »

> [=d Properties

» |+3] References

- [Resources

4 [E] frmSimpleGame2.cs
%) frmSimpleGame2 Designer.cs il

4 [Simple Game 2 Program ‘

saunog eleq 1l x0qoo]

4 | 1 b

Properties v @Ix
frmSimpleGame2 System.Windows.Forms.F -
= B =
RightTolLeft Mo &
RightToleftLayout False
Showlcon True
ShowInTaskbar True
> Size 600, 400
SizeGripStyle Auto
StartPosition WindowsDefaultLoca
u] Tag E|
Text Simple Game 2
Text

timerl The text associated with the control.

Figure 6B.4 — Designing the Simple Game Form in Visual C#

6B-4

Laying Out a User Input Form in Visual C#

We will change the Text in the
Properties pane to Simple Game 2
to agree with the sketch in Figure
6B.3. Go ahead and change the
form in two other aspects,
BackColor and Size.

Alphabetic
BackColor White
Size 600, 400

The first number is the width and
the second number is the height.
The form will change in shape to
the size measurement.

 Simpie Game 2 Program - Micrasoft Visuel Studic SR

[le [t Wew Poject Juid Debug Team Dyts fgemat Jook Tegt Window Help
P S & e - - L5 B [Ockug B
HE: : o b |l E PR et g B | S A& e |EH | Ay |

AN (renurnpleGamed o [Designl®

n

2 e
g 55 Simphe Game 3 o _'15:“
. F

EemSimpletiame Syibern Windoe o F -
a3 | |

BaghtTalelt Ne

RightToleftlayout False

thewloen Troe

ShowlTakbar Troe

Size 600, 400

Sizlieptyle Bute
WindowsDefaukloca —

StartPosition
Tag
Test Simgle Game 2

Text
The et assicisted with the contral

Figure 6B.5 — Setting the Form Properties

The background color will change to a white. There are many more attributes in the Properties
pane that we will use on future projects.

In the Solution Explorer pane, right click on Form1.cs and rename it to frmSimpleGame2.cs.

Inserting a Label into a Form

A good form is easy to figure out
by the user, so when we are
attempting to provide information
on the window that will run in
Windows; we add labels to
textboxes to explain our intent.
Press the Label (A) button on the
Control Toolbar to add a label. To
size the label area, click on the
upper left area of the form and
hold down on the left mouse
button, draw the dotted label box.

oo Hello World - Microsoft Visual Smdo. -

Ele Ede Yiew Project Budd Debug Team Ogta Ieols Tet Window Help
e LRs e e I 4 IR, § I B 4| P |Debug -5

wl pEAIED S
A Schution 'Hell Workd' {1 pecject)

o

trmHelloWearkd Syitem Wendows Forrms Fom =

2 1 | m
AutoValidste

EnablePreventfocusChan: =
[tighsteciiie
| (none)

The background coles of the compenent.

Figure 6B.6 — Placing a Label on the Form

6B-5

We will name the Label using a
common Visual C# naming
convention where the
programming object is a three
letter prefix followed by the name
or phrase of the tool. For our first
label, the name is IbPlayerlL abel.

Alphabetic

(Name) IbIPlayerlLabel
BackColor | White

Font Avrial Narrow, 16 pt
Text Player 1

On the sketch, the label’s caption
is “Player 1” The font on the
sketch is 16 point, Arial Narrow.
When highlighting the row for
Font, a small command button
with three small dots appears to
the right of the default font name
of Microsoft San Serif. Click on
the three dotted button to open the
Visual C# Font window.

We will select the Arial font,
Regular font style and 16 size for
this project to agree with the initial
sketch if the user input form.
When we adjust the attributes for
the label, these changes do not
alter globally for the other objects
on the form. If we wish to
underline the text or phrase in the
label, add a check to the Underline
checkbox in the Effects section of
the Font window. When we finish
making changes to the font
property, select the OK command
button to return to the work area.

Properties

IblPlayerllabel Systemn.Windows.Forms.Labe =

o= 2|8 |
Enabled True
Flat5tyle Standard

> Font Arial Narrow, 15.75p
ForeColor - Black
GenerateMember True
Image |:| (none)
ImageAlign MiddleCenter
Irmnagelndex |:| (none)
Imagekey |:| (none)

Text

The text associated with the control.

> 0 %

[m

-_—

Figure 6B.7 — Changing the Font Property

'—hnt‘-— E]

Font: Fort style:
il | MNarmow
| Arial Rounded MT | Narrow ftalic |2 ‘
Baskerville Old Face ltalic: i
Bavhaus 93 Reqular
Bell MT = | [Narrow Bold -
Efects Sample
[] Strikeout
] Undedine AaBbYyZz
Script:
Westem -

b -

Figure 6B.8 — The Font Window in Visual C#

6B-6

When the first label is done, the [smptecame = [Eon
background color of the label
matches the background color of
the form. In many cases that effect
is visually pleasing to the eye,
versus introducing another color.
Both color and shape will direct
the user in completing the form
along with the explanation we
place on the window to guide the
designer in using the automated
programs. Use colors and shape
strategically to communicate well.

Player 1

Figure 6B.9 — The Finished Label on the Form

We will call the label for the
second player IbIPlayer2Label and
we will make the text state “Player

2” ol Simple Game EI@
' Player 1 Player 2
Alphabetic R«oacﬂdz
(Name) IblPlayer2Label
BackColor | White
Font Arial Narrow, 16 pt
Text Player 2

The next label is for the name
Ricochet2 which is IbIName.

Alphabetic

(Name) IbIName
BackColor | White

Font Mistral, 36 pt
ForeColor | Maroon

Text Ricochet2

Figure 6B.10 — The Finished Labels on the Form

We will add two labels that will hold the scores for player 1 and 2. We will position these labels
under their identifiers and they will hold their initial number, O for their score. We will place the
last label in a position below the paddle and in the center.

6B-7

Alphabetic

(Name) IblPlayerl

Border Fixed Single ST =
BackColor | White i P 1 P)

Font Avrial Narrow, 16 pt ayer) ayer

Size 54,25 [0] Ricoclen o |

Text 0

Alphabetic

(Name) IblPlayer2

Border Fixed Single

BackColor | White

Font Arial Narrow, 16 pt

Size 54,25

Text 0

Alphabetic

(Name) IblGameOver Game Over L
BackColor | White

Font Arial, 16 pt

Text (blank)

Figure 6B.11 — Placing a Labels on the Form

After typing in Game Over for the last label, we clear out the text so we will insert the text in
the object when the game is concluded.

Inserting a Picture into the Form

We will place three pictures on the form, two are for the paddles and the other is the ball. The
paddle is 10 pixels wide by 50 pixels tall and the ball is 10 by 10 pixels. We need to open a
graphics program and make both of these icons and save them in our Simple Game Program
project folder.

We select the toolbox and Properties ES
Picturebox and we draW a box to imgPaddle Systern.Windows.Forms.PictureBox -
. - =z A = £
the right of the labels that will B
contain the answers. We name the ot ook
picturebox imgPaddlel. We scroll Enabled True _
down on the properties window | e 'szlesl"“em'[”““'”g'[
and select the three dots button at - N sivpe Game)|®
Imagelocation
the Image property and a SeIeCt > Initiallmage IEI System.Drawing.E
Resource window will appear. . Location 357,239
Locked False -
Image
The image displayed in the PictureBox,

Figure 6B.12 — Adding an Image

6B-8

We then will import the graphic of
our paddle which we made in
Microsoft Paint and saved as a
bitmap image. We then press the
OK button and the image will
appear in the picturebox.

Alphabetic

(Name) imgPaddlel

Image Verticle paddle.bmp
Location | 14,152

Size 10,50

Next, we will add a second paddle
on the right hand side of the
window using the same procedure.

Alphabetic
(Name) imgPaddle2
Image Verticle paddle.bmp

Location

560,152

Size

10,50

We then will import the graphic of
our ball which we made in
Microsoft Paint and saved as a
JPEG image. We then press the
OK button and the image will
appear in the picturebox.

Alphabetic

(Name) imgBall
Image Ball.jpg
Location 542,173
Size 10,10

Player 1

Co) Ricocdet2 (o |

Game Over

[Select Resource l' T)
Resource context
() Local resource:
@ Project resource file:
’Properties\Res-ources-.res.x VI
(none)
ball
ball2 N
paddle
0K l I Cancel
Figure 6B.13 — Import the Paddle Image
- Simple Game El@

Player 2

Figure 6B.14 — Import the Ball Image

Adding Comments in Visual C# to Communicate to Others

The comments we placed in the first four lines of the program will inform the individual

opening and reading the code of the ownership. This is for those user that may run the
application without checking the label on the bottom of the form with the copyright

6B-9

information. It is a great tool to alert the client to the rules of the program and tell them what the
application will do.

To begin the actual coding of the program, double click on the form. At the top of the program
and after the line of code with Namespace Simple Game {, place the following comments with
two slash (//) characters. Remember, the two slashes (//) will precede a comment and when the
code is compiled, comments are ignored.

Type the following line of code:

/ISimple Game 2

/IThis program will allow two players to return a ball and continue to earn points

INf the ball passes the paddle of the other player, the sending player receives the point
/land immediately serves another ball. When one player earns five points, they win.

IfrmSimpIeGamel.cs* pa frmSimpleGame?.cs [Design]®

“‘3[8Simple_Game_2_P‘ru:ugram.frmSimpIeGam& vl o x
—Inamespace Simple Game_2 Program
1

- //5imple Game 2 =
//This program will allow two players to return a ball and continue to earn points
//If the ball passes the paddle of the other player, the sending player receives the point
/fand immediately serves ancther ball. When one player earns five points, they win.

- public partial class frmSimpleGame2 @ Form

{

100% = 4| mn »

Figure 6B.15 — Adding an Introduction

Declaring Variables in a Program with the Int Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual C#, the integer
statement is one of the ways to declare a variable at the procedure level.

In this program, we will create data from mathematical computations. We will place the values
in integer variables called x, y, dx (change of x), dy (change of y), ptx1, ptyl for the paddlel
location, ptx2, pty2 for the paddle2 location,scorel for player 1 score and score2 for player 2
score. These variables will hold whole numbers for movement on the form in terms of pixels, so
we will declare all ten as integers.

Type the following code under the public partial class frmBouncingBall : Form subroutine of
the program.

public partial class frmSimpleGame2 : Form

{

6B-10

int x; IIx is the position on the x axis from the upper left corner
inty; Ily is the position on the y axis from the upper left corner
int dx; llspeed is the change of x

int dy; llspeed is the change of y

int ptx1; //x coord of the paddle 1

int ptyl; /ly coord of the paddle 1

int ptx2; //x coord of the paddle 2

int pty2; Ily coord of the paddle 2

int scorel; //player 1 score

int score2; /Iplayer 2 score

The integers x and y represent the actual position of the ball in the Simple Game Program. The
dx and dy are the change in the x position for movement of the timer. The ptx1 (ptx2) and ptyl
(pty2) are the location of the paddle so we can calculate the where the 50 pixel long line is to
determine whether the ball hit that region. The scorel (score2) is originally set to zero and
increases by one each time the ball goes by an opponent’s paddle, so we need a variable for it.
When one of the integers, scorel or score 2 reaches zero, we will end the game.

Therefore, we can see the purpose of each variable we choose in the program.

T EEE TG TNl frinSimpleGame?.cs [Design]™

I‘*‘EgSimpIe_Game_E_Program.frmSimpIeGame2 vl % frmSimpleGame() -
-Inamespace Simple_Game_2_Program ==
1{ -
- //5imple Game 2
/{This program will allow two players to return a ball and continue to earn points :_
//If the ball passes the paddle of the other player, the sending player receives the point t;
//and immediately serves another ball. When one player earns five points, they win.
= public partial class frmSimpleGame2 : Form
1
int x; //% 1s the position on the x axis from the upper left corner
int y; //y is the position on the y axis from the upper left corner
int dx; //speed is the change of x
int dy; //speed is the change of y
int ptxl; fix coord of the paddle 1
int ptyl; /fy coord of the paddle 1
int ptx2; / /% coord of the paddle 2
int pty2; /ly coord of the paddle 2
int scorel; /f{player 1 score
int scorez; //player 2 score
- public frmSimpleGame2()
1
InitializeComponent(); N
W% = 4| m ¢

Figure 6B.16 — Declaring Variables with Int Statements

The variable names should relate to what data they hold. We should not have spaces in the
name. Some programmers use the underscore character (_) to separate words in phrases. This is
acceptable, but a double underscore (__) can cause errors if we do not detect the repeated
character. We could call the variables x_coordinate and y_coordinate.

6B-11

Setting Variables in a Program

Next, we will set the variables using the equal function. We will set the numbers in the two
textboxes to their variable and we compute resistance by division and the power by using
multiplication.

Type this code under the private void frmSimpleGame_Load(object sender, EventArgs e)
subroutine of the program.

private void frmSimpleGame2_Load(object sender, EventArgs e)
{
/ILoads the ball on the screen at the upper left corner of the window
x =500;
y =200;
dx =-1; //Speed of the ball in the x direction is 1
dy =-1; //Speed of the ball in the y direction is 1
scorel =0;
score2 = 0;

}

The variable called speed is the change of vertical position in pixels, so we will start the
movement of the ball in one pixel increments. The x and y coordinates are the position of the
ball. The form is measured from 0,0 in the upper left corner to width and height of the form in
the lower right corner, which is 600 pixels by 400 pixels for our project.

We start the ball at x equals 500 and y equals 200. We keep the change of x (dx) and the change
of y (dy) the same throughout the entire program at 1 or -1. The scorel and score 2variable are
setat 0.

TR TECE TRl frm SimpleGame2.cs [Design]®
“i2Simple_Game_2_Program.frmSimpleGame? =| =% frmSimpleGame2() -
P d P P
EY
¥
- private void frmSimpleGame2 Load(cbject sender, Eventhrgs e) P
1
//Loads the ball on the screen at the upper left corner of the window
x = 588;
y = 2088; =
dx = -1; //Speed of the ball in the x direction is 1
dy = -1; //Speed of the ball in the y direction is 1
scorel = @8;
score = 8;
by
100% = 4| mn »

Figure 6B.17 — Setting the Variables in the C# Code

6B-12

Adding a Timer to the Program

Pl oo —

5 = MessageQueue = ;. g
g # PerformanceCounter (== =
a_' __; Process
= # SerialPort
E_': 1@ ServiceController
= Timer
LN 4 Printing)
% Dot Timer
b Version 4,0.0.0 from Microsoft Corporation
B Paged NET Component
La Print|

Component that raises an event at user defined
intervals

‘A PrintPréfewControl
ﬂ PrintPreviewDialog

4 Mhalogs

m

Figure 6B.18 — Adding a Timer

We will next add a Timer to the Simple Game application by selecting Timer from the Toolbox
and placing it on the form.

We Double click on the timer and

. _ : Properties * 0 X
name the object timerl. We will set
Enabled and GenerateMember as timerl System.Windows.Forms. Timer -
True and the Interval to 1 =Y EY
o . S FAL SR
millisecond. We will set the =2 | - |j
Modifiers to Private. b (ApplicationSetti
(Mame) timerl
Enabled True

Generatebembe True

Intenval |
Modifiers Private
Tag

Interval

The frequency of Elapsed events in
milliseconds.

Figure 6B.19 — Setting the Timer’s Properties

6B-13

Programming for the Timer

We will double click on the timer at the bottom of the form and we add code to change the x
and y coordinates, the direction of the ball using dx and dy, We also will add points to the score
and deduct points from the number of lives left.

The first thing we do in the timer subroutine is set the ball location. Then we change the x
coordinate by the value of dx. If the ball is at either the left vertical boundary (x < 0) or the right
vertical boundary (x + 10 > this.clientsize.width), then we change the dx direction.
This.ClientSize.Width is the number of pixels of the Window’s width.

The next order of coding is to add dy to the y coordinate. If the ball is at the top horizontal
boundary (y < 0), then we change the dy direction. The next check is to examine three points of
logic. First we retrieve the location of the paddle. With an If statement, we will see if the ball’s
x coordinate is equal or greater than the paddle’s location and less or equal than the width of the
paddle. Finally, we check if the y + 10 of the ball is greater than the y coordinate of the paddle
and if all conditions are met, we change the direction of the ball, add one to the score and post
the new score on the game window. The next If statement will detect that the ball has gone by
the paddle. Then we have an If statement to check to see if the game is over.

Type the following code in the private void timerl_Tick(object sender, EventArgs e)
subroutine.

private void timerl_Tick(object sender, EventArgs e)
{
imgBall.Location = new Point(x, y);
X=X +dx;

y=ytdy;
if (y<0)
{
dy =-dy; /// if y is less than 0 then we change direction

}
else if (y + 10 > this.ClientSize.Height)

{
dy = -dy; /// ify +10, the radius of the circle is greater than the form height then we change direction

}

/IPaddle 1

Point pointl = this.imgPaddlel.Location;
ptx1 = (pointl.X);

ptyl = (pointl.Y);

if (y >= pty1)

{

if (y <= (ptyl + 50))

{
if (x < (ptx1 +11))

6B-14

{

dx = -dx;
}
}
}
if (x <ptxl+9)
{

score? = score2 + 1;
IbIPlayer2.Text = Convert.ToString(score2);
dx =-1;
dy =-1;
x = 500;
y = pty2;
}

/[Paddle 2
Point point2 = this.imgPaddle2.Location;
ptx2 = (point2.X);
pty2 = (point2.Y);
if (y >= pty2)
{

if (y <= (pty2 + 50))

{

if (x + 10) > ptx2)

dx = -dx;
}
}
}
if (x+9)>ptx2)
{
scorel = scorel +1;
IbIPlayerl.Text = Convert.ToString(scorel);
dx=1;
dy =1;
x =100;
y = ptyl;
}

/IGame Over code
if (scorel ==5)

IblIGameOver.Text = "Game Over";
dx =0;
dy =0;

}

if (score2 ==5)

6B-15

{

IblIGameOver.Text = "Game Over";
dx =0;
dy =0;

}

this.Invalidate();

}

Programming the Paddle

Brand new in this lesson is making left and right arrow keys move the paddle to the left and
right in the game. We need to add the following to the public frmSimpleGame2() portion of the
code and right below InitializeComponent();.

KeyDown += new KeyEventHandler(frmSimpleGame2_KeyDown);

Then we add the private void frmSimpleGame_KeyDown(object sender, KeyEventArgs e)
subroutine. The first two lines of code obtain the location of the paddlel and assign it to px1
and pyl. The next two lines of code obtain the location of the paddle2 and assign it to px2 and
py2. If the Z key is pressed, paddlel moves 5 pixels downward. If the A key is pressed, paddlel
moves 5 pixels upward. If the down arrow is pressed, paddle2 moves 5 pixels downward. If the
up arrow is pressed, paddle2 moves 5 pixels upward.

The last if statement keeps the paddles in the window boundary. So if the key is pressed when
the paddle is on the boundary, the location stays the same.

Type the following code:

public frmSimpleGame2()
{
InitializeComponent();
KeyDown += new KeyEventHandler(frmSimpleGame2_KeyDown);

}

private void frmSimpleGame2_KeyDown(object sender, KeyEventArgs e)
{

int px1 = imgPaddlel.Location.X;

int pyl = imgPaddlel.Location.Y;

int px2 = imgPaddle2.Location.X;

int py2 = imgPaddle2.Location.Y;

/[Paddle 1

if (e.KeyCode == Keys.Z) pyl +=5;
else if (e.KeyCode == Keys.A) pyl -=5;

6B-16

if (pyl < 0)
{
pyl=0;

if (py1 > this.ClientSize.Height - 50)

{
pyl = this.ClientSize.Height - 50;

}
// Paddle 2

if (e.KeyCode == Keys.Down) py2 +=5;
else if (e.KeyCode == Keys.Up) py2 -= 5;

if (py2 < 0)
{
py2=0;
}
if (py2 > this.ClientSize.Height - 50)

py2 = this.ClientSize.Height - 50;
}

imgPaddlel.Location = new Point(px1, pyl);
imgPaddle2.Location = new Point(px2, py2);

Running the Program

After noting that the program is [s smeleGome v —
saved, press the F5 to run the | Player 1 Player 2
Simple Game 2 application. The [0] Rwoﬁdz [0 |
Simple Game 2 window will

appear on the graphical display. °

The ball will be moving down
from the top and we have the
ability to use the arrow keys to I
stop the ball from getting by the
paddle.

After playing the Simple Game 2
program, click on the red X in the

upper right corner to close the

application.

Figure 6B.20 — Launching the Program

6B-17

If our program does not function correctly, go back to the code and check the syntax against the
program shown in previous sections. Repeat any processes to check or Beta test the program.
When the program is working perfectly, save and close the project.

Here is the entire code to check your syntax.

using System;

using System.Collections.Generic;
using System.ComponentModel,
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace Simple_Game_2_Program

{
/ISimple Game 2
/[This program will allow two players to return a ball and continue to earn points
INf the ball passes the paddle of the other player, the sending player recieves the point
/land immediately serves another ball. When one player earns five points, they win.
public partial class frmSimpleGame2 : Form

{
int x; IIx is the position on the x axis from the upper left corner
inty; Ily is the position on the y axis from the upper left corner
int dx; lIspeed is the change of x

int dy; llspeed is the change of y
int ptx1; IIx coord of the paddle 1
int pty1; Ily coord of the paddle 1
intptx2; //x coord of the paddle 2
int pty2; Ily coord of the paddle 2
int scorel; /Iplayer 1 score

int score2; /Iplayer 2 score

public frmSimpleGame2()
{
InitializeComponent();
KeyDown += new KeyEventHandler(frmSimpleGame2_KeyDown);

}

private void frmSimpleGame2_KeyDown(object sender, KeyEventArgs e)
{

int px1 = imgPaddlel.Location.X;

int pyl = imgPaddlel.Location.Y;

int px2 = imgPaddle2.Location.X;

int py2 = imgPaddle2.Location.Y;

6B-18

}

/IPaddle 1
if (e.KeyCode == Keys.Z) pyl +=5;
else if (e.KeyCode == Keys.A) pyl -=5;

if (pyl < 0)
{
pyl=0;

}
if (py1 > this.ClientSize.Height - 50)

pyl = this.ClientSize.Height - 50;
}

/I Paddle 2
if (e.KeyCode == Keys.Down) py2 +=5;
else if (e.KeyCode == Keys.Up) py2 -= 5;

if (py2 < 0)
{

py2=0;
}
if (py2 > this.ClientSize.Height - 50)

{
py2 = this.ClientSize.Height - 50;

}

imgPaddlel.Location = new Point(px1, pyl);
imgPaddle2.Location = new Point(px2, py2);

private void frmSimpleGame2_Load(object sender, EventArgs e)

{

}

/ILoads the ball on the screen at the upper left corner of the window
X =500;

y = 200;

dx =-1; //Speed of the ball in the x direction is 1

dy =-1; //Speed of the ball in the y direction is 1

scorel =0;

score2 =0,

private void timerl_Tick(object sender, EventArgs e)

{

imgBall.Location = new Point(x, y);
X=X +dx;

y=y+dy,

6B-19

if (y<0)
{

dy =-dy; /// if y is less than 0 then we change direction

}
else if (y + 10 > this.ClientSize.Height)

{
dy = -dy; /// ify +10, the radius of the circle is greater than the form height then we change direction

}

/[IPaddle 1
Point pointl = this.imgPaddlel.Location;
ptx1 = (pointl.X);
ptyl = (pointl.Y);
if (y >= ptyl)
{
if (y <= (ptyl + 50))

if (x < (ptx1 + 11))

dx = -dx;
}
}
}
if (x <ptxl+9)
{
score2 = score2 + 1;
IbIPlayer2.Text = Convert.ToString(score2);
dx=-1;
dy =-1;
x = 500;
y = pty2;
}

/IPaddle 2
Point point2 = this.imgPaddle2.Location;
ptx2 = (point2.X);
pty2 = (point2.Y);
if (y >= pty2)
{
if (y <= (pty2 + 50))

if (x + 10) > ptx2)

dx = -dx;
}

}
}

6B-20

if (x+9)>ptx2)
{
scorel = scorel + 1;
IbIPlayerl.Text = Convert.ToString(scorel);
dx=1;
dy =1;
x =100;
y =ptyl;
}

[IGame Over code

if (scorel ==5)

{
IblIGameOver.Text = "Game Over";
dx =0;
dy =0;

}

if (score2 ==5)

IblIGameOver.Text = "Game Over";
dx =0;
dy =0;

}

this.Invalidate();

}
}
}

There are many variations of this Visual C# Application we can practice and obtain information
from a personal computer. While we are practicing with forms, we can learn how to use
variables, strings and comments. These are skills that we want to commit to memory.

* World Class CAD Challenge 90-10 * - Write a Visual C# Application that displays a
single form and when executed, the program will show a Simple Game from the computer
using mathematical computations.

Continue this drill four times using some other form designs, each time completing the
Visual C# Project in less than 1 hour to maintain your World Class ranking.

6B-21

