
C h a p t e r 7

Visual Basic Program:
Subnetting Calculator

In this chapter, you will learn how to use the following Visual Basic
Application functions to World Class standards:

 Opening Visual Basic Editor
 Beginning a New Visual Basic Project
 Laying Out a User Input Form in Visual Basic
 Insert a Label into a Form
 Insert a Textbox into a Form
 Insert a Label into a Form to Post an Output
 Insert Command Buttons into a Form
 Adding a Copyright Statement to a Form
 Adding Comments in Visual Basic to Communicate the Copyright
 Declaring Variables in a Program with the Dimension Statement
 Setting Variables in a Program
 Using Condition Statements
 Writing Information to a Text File
 Resetting the Data
 Exiting the Program
 Adding a Browse and Open File Button
 Running the Program

 7-1

Subnetting a TCP/IP Network

Many times when we write a new program, we will want to output the data to a computer file
such as a text document, spreadsheet or database. The Subnetting Calculator application in this
chapter is a perfect example of a computer program that can create as few subnets as two or as
many as 256, so we choose to send the IP addresses to a text file.

In this lesson, we need to utilize textboxes, labels and command buttons as we have in previous
training sessions, but we will create an additional two command buttons to browse for the folder
to place the newly created text file and another push button to open the computer file after we
calculate the values of each subnet.

In our tutorial, we again use condition statements to make decisions, we utilize while loops to
repeat repetitive expressions and we continue to concatenate strings to construct information
that is useful to the computer user. Although this program is larger than some done before,
many components of the code are rhythmic and we can quickly spot the changes to each
segment of the software.

Open the Visual Basic Editor

In this session, we will step
through each procedure in adding
labels, textboxes and command
buttons and we will integrate into
the tutorial the methods to add,
subtract, multiply and divide
numbers. We will also include
formatting the answers as they are
shown in the answer labels. As in
every project, we will create
variable, set their values, execute
mathematical equations and output
data. In this lesson, we revisit the
procedure to add the computer
date and time to the form.
 Figure 7.1 – The Start Page

To open a new project, we select File on the Menu Bar and New Project.

We start a new Windows Application by picking the Windows Application icon from the
installed templates list on the New Project window.

 7-2

Figure 7.2 – New Project

With the Visual Basic Editor open, select File on the Menu Bar and select Save All. For the
location, we will browse to the folder “Visual Basic Projects” that we made in Chapter 2. We
will name this project “Subnetting Calculator”. A folder called “Subnetting Calculator” will be
made and all the files for the program will be located in the folder.

Beginning a New Visual Basic Application

Remember, that all programming projects begin with one or more sketches. The sketch will
show labels, textboxes, and command buttons. In this project, we will name the input form,
Subnetting Calculator. We will have six textboxes to key in the network IP address, the
number of subnet and the filename that will hold the calculated data. We will have two labels
with borders to output the subnet mask and the number of devices on each subnet. There will be
labels to identify the textboxes and labels withy borders. We will have five command buttons,
Browse, Calculate, Open File, Reset and Exit. On the bottom of the form, we will write the
copyright statement using another label. On this presentation, we can help ourselves by being as
accurate as possible, by displaying sizes, fonts, colors and any other specific details which will
enable us to quickly create the form. On this form, we will use a 12 point Arial font. From the
beginning of inserting the form into the project, we need to refer to our sketch.

 7-3

We should train new programmers
initially in the art of form building.
When using the editor, we insert
and size the form, and selecting the
Controls Toolbox, we will place all
the various input tools and properly
label them. Whenever we place an
input tool, the properties window
will display a list of every attribute
associated with the tool, and we
will take every effort to arrange the
tool by performing such actions as
naming, labeling and sizing the
visual input device.

 Figure 7.3 – Sketch of the Resistor Sizing Form

Figure 7.4 – Designing the Subnetting Calculator Form in Visual Basic

 7-4

Laying Out a User Input Form in Visual Basic

We will change the Text in the
Properties pane to Subnetting
Calculator to agree with the sketch
in Figure 7.3. Go ahead and change
the form in two other aspects,
BackColor and Size.

Alphabetic
(Name) frmSubnettingCalc
Size 446, 337
Text Subnetting Calculator

The first number is the width and
the second number is the height.
The form will change in shape to
the size measurement.

 Figure 7.5 – Setting the Form Properties

The background color will change to a white. There are many more attributes in the Properties
pane that we will use on future projects.

In this project, we will select the
font in the form. By selecting the
font, font style and size for the
form, each label, textbox and
command button we insert will
have these settings for their font.

When highlighting the row for
Font, a small command button with
three small dots appears to the right
of the default font name of
Microsoft San Serif. Click on the
three dotted button to open the
Visual Basic Font window.

 Figure 7.6 – The Font Window in Visual Basic

 7-5

We will select the Arial font,
Regular font style and 12 size for
this project to agree with the initial
sketch if the user input form. If we
wish to underline the text or
phrase in the label, add a check to
the Underline checkbox in the
Effects section of the Font
window. When we finish making
changes to the font property, select
the OK command button to return
to the work area.

 Figure 7.7 – Changing the Font to Arial

Inserting a Label into a Form

A good form is easy to figure out by the user, so when we are attempting to provide information
on the window that will run in Windows; we add labels to textboxes to explain our intent. Press
the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the dotted label box.

When the first label is done, the background color of the label matches the background color of
the form. In many cases that effect is visually pleasing to the eye, versus introducing another
color. Both color and shape will direct the user in completing the form along with the
explanation we place on the window to guide the designer in using the automated programs.
Use colors and shape strategically to communicate well.

We will insert our first Label on the
upper left corner of the form and
call the entity lblNetworkAddress.

Alphabetic
(Name) lblNetworkAddress
Text Network Address

Since the font is already set, we just
type “Network Address” at the text
attribute.

 Figure 7.8 – The Finished Label on the Form

 7-6

Inserting a Textbox into a Form

A textbox is used so that a user of
the computer program can input
data in the form of words, numbers
or a mixture of both. Press the
TextBox (ab) button on the
Control Toolbar to add a textbox.
To size the label area, click on the
upper left area of the form and
hold down on the left mouse
button, draw the dotted textbox.

 Figure 7.9 – Placing a TextBox on the Form

We will name the TextBox using
the three letter prefix followed by
the name or phrase of the tool. For
our first textbox, the name is
txtOctet1.

Alphabetic
(Name) txtOctet1
Backcolor White
Size 36, 26
TextAlign Center

The size of the textbox will be 36
wide and 26 tall and the characters
inside the textbox will be center
aligned. The BackColor will be
white.

 Figure 7.10 – Setting the Size of the Textbox

We will insert three labels named lblDot1, 2 and 3 that display a period between each octet
textbox. We will insert three more textboxes named Octet2, Octet3 and Octet4 as shown in
figure 7.11.

We will modify the properties for the textboxes as shown below.

 7-7

Alphabetic
(Name) txtOctet2
Backcolor White
Size 36, 26
TextAlign Center

Alphabetic
(Name) txtOctet3
Backcolor White
Size 36, 26
TextAlign Center

Alphabetic
(Name) txtOctet4
Backcolor White
Size 36, 26
TextAlign Center

 Figure 7.11 – Adding another Label

We add another row of label and a
textbox. The following are the key
properties.

Alphabetic
(Name) lblSubnetQty
Text Number of Subnets

Alphabetic
(Name) txtSubnetQty
Backcolor White
Size 36, 26

 Figure 7.12 – Second Row of Label and Textbox

Inserting a Label into a Form to Post the Output

Some labels on a form are in a position to display an answer after the user inputs data and they
press the command button to execute the application. To add this label, press the Label (A)
button on the Control Toolbar to add a label. To size the label area, click on the upper left area
of the form and hold down on the left mouse button, draw the dotted label box.

 7-8

We will place a label under
lblSubnetQty label and call it
lblSubnetMask. We will make the
label text Subnet Mask. The key
attributes for the label are:

Alphabetic
(Name) lblSubnetMask
Text Subnet Mask

 Figure 7.13 – Placing a Label for the Answer

We will insert the label for the
answer to the right of
lblSubnetMask and name the
label lblSubnetMaskAnswer.

Alphabetic
(Name) lblSubnetMaskAnswer
BackColor White
BorderStyle FixedSingle
Size 254,26
TextAlign Middle left

We will make the borderstyle
FixedSingle to place a line around
the answer.

 Figure 7.14 – BackColor is White

We will place another label under lblSubnetMask label and call it lblHostQty. We will make
the label text Subnet Mask. The key attributes for the label are:

 7-9

Alphabetic
(Name) lblHost Qty
Text Subnet Mask

We will insert the label for the
answer to the right of lblHostQty
and name the label
lblHostQtyAnswer.

Alphabetic
(Name) lblHostQtyAnswer
BackColor White
BorderStyle FixedSingle
Size 254,26
TextAlign Middle left

We will make the borderstyle
FixedSingle to place a line around
the answer.

 Figure 7.16 – Label Name is lblPower

We will place another label under lblHostQty label and call it lblFilename. We will make the
label text File Name. The key attributes for the label are:

Alphabetic
(Name) lblFilename
Text File Name

We will insert a textbox for the
input to the right of lblFilename
and name the textbox
txtFilename.

Alphabetic
(Name) txtFilename
BackColor White
BorderStyle FixedSingle
Size 200,26
TextAlign Center

We will make the borderstyle
FixedSingle to place a line around
the answer.

 Figure 7.17 – Label Name is lblWattsAnswer

 7-10

Inserting a Command Buttons into a Form

A command button is used so that a user will execute the application. Press the Command
button on the Control Toolbar to add a command button. To size the label area, click on the
upper left area of the form and hold down on the left mouse button, draw the command button
as shown in Figure 7.18.

We will name the command button
using the name is cmdBrowse.

Alphabetic
(Name) cmdBrowse
Caption Browse
Size 90,29

 Figure 7.18 – The Command cmdCalculate Button

Add a second Command button,
named cmdCalculate computing
the subnets. Add a third Command
button, named cmdOpenFile to
view the output. The fourth
Command button is for clearing
the textboxes and output labels.
The fifth command button is to
exit the program. When the user
presses the Exit command button,
the application closes. Notice the
equal spacing between the
command buttons gives a visually
friendly appearance.

 Figure 7.19 – Insert Two More Command Buttons

 7-11

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special
instructions in the form of comments such as copyright, permissions or other legal notices to
inform programmers what are the rules dealing with running the code. Comments at the
opening of the code could help an individual determine whether the program is right for their
application or is legal to use. The message box is a great tool when properly utilized to inform
someone if they are breaking a copyright law when running the code.

Finish the form with the following
copyright information.

Subnetting Calculator.dv copyright
(c) 2011 by charles robbins

If there are special rules or
instructions that the user needs to
know, place that information on
the bottom of the form.

 Figure 7.20 – Adding a Copyright Statement

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual
opening and reading the code, but those user that may run the application without checking, the
label on the bottom of the form with the copyright information is a great tool to alert the client
to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Hello command button. At the
top of the program and before the line of code with Private Sub cmdCalculate_Click (), place
the following comments with the single quote (‘) character. Remember, the single quote
character (‘) will precede a comment and when the code is compiled, comments are ignored.

Type the following line of code:

'Subnetting Calculator.vb copyright (c) 2011 by Charles W. Robbins
'This program will open a dialogue box, allow the user to type the network address, the number of
'subnets and the filename that will hold each subnet network address, IP address range and
‘broadcast address. When the user clicks on the Calculate button, all is calculated.

 7-12

Figure 7.24 – Adding a Copyright Statement

Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of
the code, we create a variable to hold the value of that changing entity. In Visual Basic, the
dimension statement is one of the ways to declare a variable at the procedure level. The other
two ways are the Private and Public statements.

Under the Public Class we will declare two variable using public statements, which are path
and newfile. Both of these variables are strings and the first hold the characters that describe the
folder where the text file for the subnets. The second variable is the actual text file name.

Public Class frmSubnettingCalc
 Public path As String
 Public newfile As String

The next ten variables are the logical holders of data for the application. The first four octet1
through octet4 hold the TCP/IP version4 network address. The subnet variable holds the
quantity of subnets we wish to compute. When the last octet for the subnet mask is computed it
will be stored in the variable subnet_last_octet. The netIP variable will store the IP address for
each subnet. The IPrange variable will store the IP address range for each subnet. The
Broadcast variable will store the broadcast IP address for each subnet. Lastly, the counter
variable holds the integer that advances by one on each cycle of the while loop.

Type the following code under the cmdCalculate subroutine of the program.

Private Sub cmdCalculate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles cmdCalculate.Click
 'declare variables
 Dim octet1 As Double
 Dim octet2 As Double
 Dim octet3 As Double
 Dim octet4 As Double
 Dim subnet As Double

 7-13

 Dim subnet_last_octet As String
 Dim netIP As String
 Dim IpRange As String
 Dim Broadcast As String
 Dim counter As Double

Figure 7.25 – Declaring Variables with Dim Statements

Notice that the variable name should be a word or a phrase without spaces that represents the
value that the variable contains. If we want to hold a value of one’s date of birth, we can call the
variable, DateofBirth. The keywords Date and Birth are in sentence case with the first letter
capitalized. There are no spaces in the name. Some programmers use the underscore character
(_) to separate words in phrases. This is acceptable, but a double underscore (__) can cause
errors if we do not detect the repeated character.

Setting Variables in a Program

Next, we will set the variables using the equal function. We will set the octet variables to the
numbers in the four textboxes. We capture the subnet quantity in the subnet variable and we
store the file name in the variable newfile.

Type the following code under the “set variable” section of the cmdCalculate subroutine of the
program.

 'set variables
 octet1 = txtOctet1.Text
 octet2 = txtOctet2.Text
 octet3 = txtOctet3.Text

 7-14

 octet4 = txtOctet4.Text
 subnet = txtSubnetQty.Text
 newfile = txtFileName.Text

Figure 7.26 – Setting the Variables in the VBA Code

Using Condition Statements

In this section of the code, we will
use the condition statement to
compute the subnet mask’s last
octet. If the subnet quantity is 1
then the subnet_last_octet variable
will be 0 and the subnet quantity is
still 1. We can see this in the If
Then Else statement

If subnet = 1 Then
 subnet_last_octet = "0"
 subnet = 1
End If

However the next condition
statement uses the And function to
test for two conditions
simultaneously which is subnet
greater than and less or equal to
two. If the subnet quantity meets
these conidtions then the
subnet_last_octet variable will be
2 and the subnet quantity is still 2.
We can copy each If-Then
expression and change it for the
progression:

{1,2,4,8,16,32,64,128,256}

 Figure 7.27 – Displaying the Answers

 7-15

Writing Information to a Text File

The next three sections are also repetitive and somewhat easy to write. The first thing we do is
check the first octet against the range for each class in the TCP/IP scheme. The following is the
permissible range for each class.

Class Range
A 1-126
B 128-191
C 192-223

Then we build the string to write to the label, lblSubnetMaskAnswer.Text by starting out with 225
and the subnet_last_octet variable and then “.0.0”. After that, we construct the number of devices
on each subnet to write to the label, lblHostQtyAnswer.Text by computing 2 to the 24 power
divied by the number of subnets and then subtracting two.

We open the newfile using My.Computer.FileSystem.WriteAllText(path & newfile & ".txt" and write
the headers "Subnet" & vbTab & "Network IP" & vbTab & vbTab & "IP Range" & vbTab & vbTab
& vbTab & "Broadcast IP” above our soon to be written table and add a newline using the vbCrLf
expression. We use vbTab to tab in the text file between strings.

We set the variable counter to zero when we start the while loop. The loop will set the network
IP address, the broadcast IP address and the IP range and then write the information to the text
file. We add one to the counter before starting through the cycle again.

Go ahead and type the following code below the set variables section.

 'set subnet mask for class A network
If octet1 >= 1 And octet1 <= 126 Then
 lblSubnetMaskAnswer.Text = "255." & subnet_last_octet & ".0.0"
 lblHostQtyAnswer.Text = 2 ^ 24 / subnet - 2
 My.Computer.FileSystem.WriteAllText(path & newfile & ".txt", "Subnet" & vbTab & "Network IP" & vbTab & vbTab &
 "IP Range" & vbTab & vbTab & vbTab & "Broadcast IP" & vbCrLf, True)
 counter = 0
 Do While counter < subnet
 netIP = Str(octet1) & "." & Str(octet2 + (256 / subnet) * counter) & "." & Str(octet3) & "." & Str(octet4)
 Broadcast = Str(octet1) & "." & Str(octet2 + (256 / subnet) * (counter + 1) - 1) & ". 255" & ". 255"
 IpRange = Str(octet1) & "." & Str(octet2 + (256 / subnet) * counter) & "." & Str(octet3) & "." & Str(octet4 + 1) & " - " &
Str(octet1) & "." & Str(octet2 + (256 / subnet) * (counter + 1) - 1) & ". 255" & ". 254"
 My.Computer.FileSystem.WriteAllText(path & newfile & ".txt", " " & Str(counter + 1) & vbTab & netIP & vbTab &
IpRange & vbTab & Broadcast & vbCrLf, True)
 counter = counter + 1
 Loop
End If

We can copy the class A section and make small changes to the program because the class B
subnet mask makes it changes in the third octet.

 7-16

'set subnet mask for class B network
If octet1 >= 128 And octet1 <= 191 Then
 lblSubnetMaskAnswer.Text = "255.255." & subnet_last_octet & ".0"
 lblHostQtyAnswer.Text = 2 ^ 16 / subnet - 2
 counter = 0
 My.Computer.FileSystem.WriteAllText(path & newfile & ".txt", "Subnet" & vbTab & "Network IP"
& vbTab & vbTab & "IP Range" & vbTab & vbTab & vbTab & "Broadcast IP" & vbCrLf, True)
 Do While counter < subnet
 netIP = Str(octet1) & "." & Str(octet2) & "." & Str(octet3 + (256 / subnet) * counter) & "." & Str(octet4)
 Broadcast = Str(octet1) & "." & Str(octet2) & "." & Str(octet3 + (256 / subnet) * (counter + 1) - 1) & ". 255"
 IpRange = Str(octet1) & "." & Str(octet2) & "." & Str(octet3 + (256 / subnet) * counter) & "." & Str(octet4 + 1) & " - " &
Str(octet1) & "." & Str(octet2) & "." & Str(octet3 + (256 / subnet) * (counter + 1) - 1) & ". 254"
 My.Computer.FileSystem.WriteAllText(path & newfile & ".txt", " " & Str(counter + 1) & vbTab &
netIP & vbTab & IpRange & vbTab & Broadcast & vbCrLf, True)
 counter = counter + 1
 Loop
End If

We can copy the class A section and make small changes to the program because the class C
subnet mask makes it changes in the third octet.

'set subnet mask for class C network
If octet1 >= 192 And octet1 <= 223 Then
 lblSubnetMaskAnswer.Text = "255.255.255." & subnet_last_octet
 lblHostQtyAnswer.Text = 2 ^ 8 / subnet - 2
 counter = 0
 My.Computer.FileSystem.WriteAllText(path & newfile & ".txt", "Subnet" & vbTab & "Network IP"
& vbTab & vbTab & "IP Range" & vbTab & vbTab & vbTab & "Broadcast IP" & vbCrLf, True)
 Do While counter < subnet
 netIP = Str(octet1) & "." & Str(octet2) & "." & Str(octet3) & "." & Str(octet4 + (256 / subnet) * counter)
 Broadcast = Str(octet1) & "." & Str(octet2) & "." & Str(octet3) & "." & Str(octet4 + (256 / subnet) * (counter + 1) - 1)
 IpRange = Str(octet1) & "." & Str(octet2) & "." & Str(octet3) & "." & Str(octet4 + (256 / subnet) * counter + 1) & " - " &
Str(octet1) & "." & Str(octet2) & "." & Str(octet3) & "." & Str(octet4 + (256 / subnet) * (counter + 1) - 2)
 My.Computer.FileSystem.WriteAllText(path & newfile & ".txt", " " & Str(counter + 1) & vbTab & netIP & vbTab & IpRange
& vbTab & Broadcast & vbCrLf, True)
 counter = counter + 1
 Loop
End If

Resetting the Data

To clear the textboxes or labels containing the data, we will clear the four octet textboxes, the
subnet quantity textbox, the subnet mask answer textbox, the host quantity textbox, the text file
textbox, and the path. Type the following code under the cmdReset subroutine of the program

 7-17

 'Clear textboxes, labels and path
 txtOctet1.Text = ""
 txtOctet2.Text = ""
 txtOctet3.Text = ""
 txtOctet4.Text = ""
 txtSubnetQty.Text = ""
 lblSubnetMaskAnswer.Text = ""
 lblHostQtyAnswer.Text = ""
 txtFileName.Text = ""
 path = ""

Figure 7.28 – Computing the Reset Button by Clearing a Textbox and Label Caption

Exiting the Program

Figure 7.29 – Exiting the Program

To exit this program, we will unload the application and end the program.
Type the following code:

“Unload and exit the program
Me.Close()

 7-18

Programming a Browse and Open File Button

We found a way to add a Browse button from the Microsoft website1. We wanted a way for the
user to pick a folder that will hold the subnet text file. In this section of code, we place under
the Browse command button.

'Find the folder to write the subnet file to
 Dim FolderBrowser As New FolderBrowserDialog

 FolderBrowser.ShowNewFolderButton = False
 FolderBrowser.RootFolder = System.Environment.SpecialFolder.Desktop
 FolderBrowser.SelectedPath = My.Computer.FileSystem.SpecialDirectories.Desktop

 If FolderBrowser.ShowDialog = Windows.Forms.DialogResult.OK Then
 path = FolderBrowser.SelectedPath & "\"
 End If

Figure 7.30 – Launching the Program

Under the Open Command button we write this expression to open the text file.

 'open the file to view and print
 System.Diagnostics.Process.Start("Notepad", path & newfile & ".txt")

1FolderBrowserDialog.RootFolder Property, 2011, Microsoft, June 5, 2011
<http://msdn.microsoft.com/en-us/library/system.windows.forms.folderbrowserdialog.rootfolder.aspx>

 7-19

Running the Program

After noting that the program is
saved, press the F5 to run the
Subnetting Calculator application.
The Subnetting Calculator window
will appear on the graphical
display as shown in Figure 7.30.
Notice the professional appearance
and presentation of information in
a clean dialogue box.

 Figure 7.30 – Launching the Program

Type the network IP address and
the number of subnets in the
textboxes just as we typed as
shown in Figure 7.31. If we make
a mistake, we can type over the
text entry or press the Reset
command button to clear the
textbox. Type the file name.

 Figure 7.31 – Running the Program

 7-20

Then click on the Browse button
to locate a folder to hold the new
text file. We will choose My
Documents and then choose the
OK button.

 Figure 7.31 – Running the Program

Press the Calculate command
button and the two answer labels
will have the subnet mask and the
number of devices.

 Figure 7.31 – Running the Program

We can pick the Open File
command button and we can read
each subnet mask. After
experimenting with our program,
press the Exit command button to
exit the application.

 Figure 7.31 – Running the Program

 7-21

 7-22

If our program does not function correctly, go back to the code and check the syntax against the
program shown in previous sections. Repeat any processes to check or Beta test the program.
When the program is working perfectly, save and close the project.

There are many variations of this Visual Basic Application we can practice and obtain
information from a personal computer. While we are practicing with forms, we can learn how to
use variables, strings and comments. These are skills that we want to commit to memory.

* World Class CAD Challenge 90-6 * - Write a Visual Basic Application that writes a
series of text strings to a text file. Incorporate the vbTab, and new line functions. Also,
allow the user to create a file name and choose a path for the file using a Browse button.
Complete the assignment in two hours to maintain your World Class CAD ranking.

Continue this drill four times using some other form designs, each time completing the
Visual Basic Project in less than 2 hour to maintain your World Class ranking.

