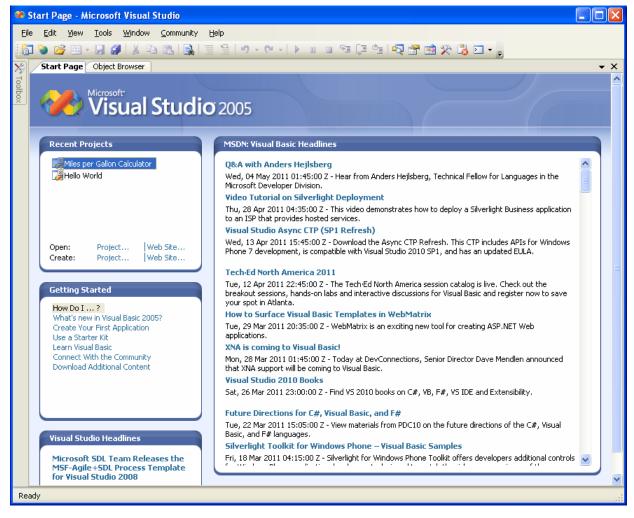
Visual Basic Program: Resistor Sizing Calculator


In this chapter, you will learn how to use the following Visual Basic Application functions to World Class standards:

- Opening Visual Basic Editor
- Beginning a New Visual Basic Project
- Laying Out a User Input Form in Visual Basic
- Insert a Label into a Form
- Insert a Textbox into a Form
- Insert a Label into a Form to Post an Output
- Insert Command Buttons into a Form
- Adding a Copyright Statement to a Form
- Insert a Picture into a Form
- Adding Comments in Visual Basic to Communicate the Copyright
- Declaring Variables in a Program with the Dimension Statement
- Setting Variables in a Program
- Using a Label to Communicate with Variables
- Ending the Program
- Running the Program

Open the Visual Basic Editor

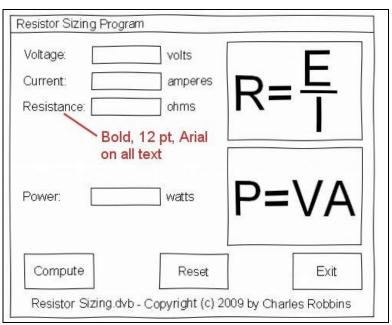
In our third lesson, we will step through each procedure in adding labels, textboxes and command buttons and we will integrate into the tutorial the methods to add, subtract, multiply and divide numbers. We will also include formatting the answers as they are shown in the answer labels. As in every project, we will create variable, set their values, execute mathematical equations and output data. In this lesson, we revisit the procedure to add the computer date and time to the form.

To open a new project, we select File on the Menu Bar and New Project.

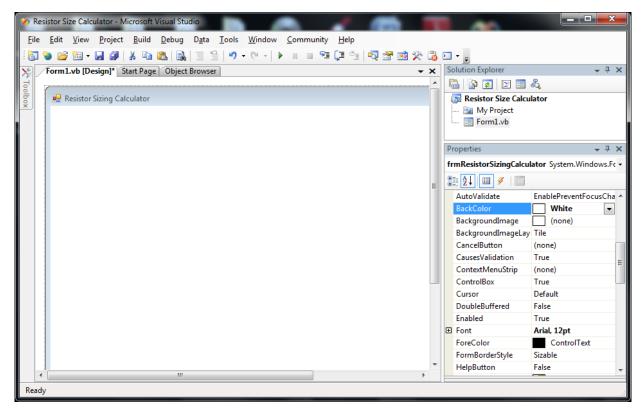
Figure 4.1 – The Start Page

We start a new Windows Application by picking the Windows Application icon from the installed templates list on the New Project window.

New Project							? 🔀
Project types:		Templates: Visual Studio) installed tem	lates			
Windows Smart Device Other Language Other Project T	es	Windows Application Windows Service My Template	Class Library VB Empty Project	Console Application Crystal Reports	Windows Control Library	Web Control Library	
A annaía at Gan ann ati		- 110	- b - u f				<u> </u>
A project for creating	ng an application with	a windows user ir	nterrace				
<u>N</u> ame:	Resistor Size Calcula	ator					
					C	ок	Cancel


Figure 4.2 – New Project

With the Visual Basic Editor open, select **File** on the Menu Bar and select **Save All**. For the location, we will browse to the folder "Visual Basic Projects" that we made in Chapter 2. We will name this project "Resistor Sizing Calculator". A folder called "Resistor Sizing calculator" will be made and all the files for the program will be located in the folder.


Beginning a New Visual Basic Application

Remember, that all programming projects begin with one or more sketches. The sketch will show labels, textboxes, and command buttons. In this project, we will name the input form, **Resistor Sizing Calculator**. We will have two textboxes to key in the voltage and current that the resistor will receive and both textboxes will have labels to identify their content. We will have two labels with borders to output the resistance and power ratings of the resistor. Those two boxes will have labels for identification. We will have three command buttons, **Calculate**, **Reset** and **Exit**. On the bottom of the form, we will write the copyright statement using another label. On this presentation, we can help ourselves by being as accurate as possible, by displaying sizes, fonts, colors and any other specific details which will enable us to quickly create the form. On this form, we will use a 12 point Arial font. We will have a graphic of a resistance and power formulas above the Exit button. From the beginning of inserting the form into the project, we need to refer to our sketch.

We should train new programmers initially in the art of form building. When using the editor, we insert and size the form, and selecting the Controls Toolbox, we will place all the various input tools and properly label them. Whenever we place an input tool, the properties window will display a list of every attribute associated with the tool, and we will take every effort to arrange the tool by performing such actions as naming, labeling and sizing the visual input device.

Figure 4.3 – Sketch of the Resistor Sizing Form

Laying Out a User Input Form in Visual Basic

We will change the **Text** in the Properties pane to Resistor Sizing Calculator to agree with the sketch in Figure 4.3. Go ahead and change the form in two other aspects, BackColor and Size.

Alphabetic	
BackColor	White
Font	Arial, 12 pt
Size	477,313

The first number is the width and the second number is the height. The form will change in shape to the size measurement.

ile	Edit	View	Project	Build	Debug	Data	Format	Tools	Window	Community	Help		
					-							🐋 🛠 🖏 🖬 • 🔒	
			rm1.vb [i								• ×	Solution Explorer	
	Form	.vb re	1111.00 [1	Designj	Start P	ige O	јест вто	v2ei			• •		
	PH R	esistor S	izing Calo	ulator					Ŀ	- 0 🗙		Resistor Size Ca	lculator
												📴 My Project	
												Folling wo	
												Properties	*
												frmResistorSizingCal	culator System.Windows.F
												8:2↓	-
												Locked	False
												MainMenuStrip	(none)
												MaximizeBox	True
											þ	⊞ MaximumSize	0, 0
												MinimizeBox	True
												MinimumSize	0, 0
												Opacity	100%
												Padding	0, 0, 0, 0
												RightToLeft	No
												RightToLeftLayout	
												ShowIcon	True
												ShowInTaskbar	True
												Size	520, 430
												SizeGripStyle	Auto
						C					-6	StartPosition	WindowsDefaultLocat
												Taq	

Figure 4.5 – Setting the Form Properties

The background color will change to a white. There are many more attributes in the Properties pane that we will use on future projects.

In this project, we will select the font in the form. By selecting the font, font style and size for the form, each label, textbox and command button we insert will have these settings for their font.

When highlighting the row for Font, a small command button with three small dots appears to the right of the default font name of Microsoft San Serif. Click on the three dotted button to open the Visual Basic Font window.

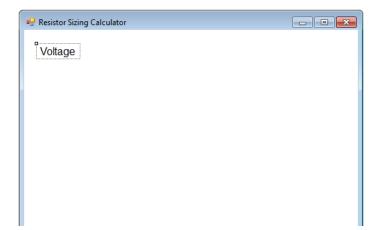
Pr	operties	→ ‡ X
fr	mResistorSizingCalcul	ator System.Windows.Fc -
•	21 🗉 🖋 🗀	
	AutoValidate	EnablePreventFocusCha 🔺
	BackColor	White 💌
	BackgroundImage	(none)
	BackgroundImageLay	Tile
	CancelButton	(none)
	CausesValidation	True
	ContextMenuStrip	(none)
	ControlBox	True
	Cursor	Default
	DoubleBuffered	False
	Enabled	True
Ŧ	Font	Arial, 12pt
	ForeColor	ControlText
	FormBorderStyle	Sizable
	HelpButton	False _

We will select the Arial font, Regular font style and 12 size for this project to agree with the initial sketch if the user input form. If we wish to underline the text or phrase in the label, add a check to the Underline checkbox in the Effects section of the Font window. When we finish making changes to the font property, select the OK command button to return to the work area.

Font		Carl N.			×
Eont: Arial Arial Rounded MT Baskerville Old Face Bauhau/ 93 Bell MT	•	Font style: Regular Regular Narrow Bold Narrow Bold Italii Bold Bold Italic +	<u>S</u> ize: 12 14 16 18 20 22 24	• III •	OK Cancel
Effects		Sample AaBbYyz Script: Western	Zz	•	

Figure 4.7 – Changing the Font to Arial

Inserting a Label into a Form


A good form is easy to figure out by the user, so when we are attempting to provide information on the window that will run in Windows; we add labels to textboxes to explain our intent. Press the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the upper left area of the form and hold down on the left mouse button, draw the dotted label box.

When the first label is done, the background color of the label matches the background color of the form. In many cases that effect is visually pleasing to the eye, versus introducing another color. Both color and shape will direct the user in completing the form along with the explanation we place on the window to guide the designer in using the automated programs. Use colors and shape strategically to communicate well.

We will insert our first Label on the upper left corner of the form and call the entity **lblVoltage.**

Alphabetic	
(Name)	lblVoltage
BackColor	White
Text	Voltage
Font	Arial, 12 pt

Since the backcolor and font are already set, we just type "Voltage" at the text attribute.

Figure 4.8 – The Finished Label on the Form

Inserting a Textbox into a Form

A textbox is used so that a user of the computer program can input data in the form of words, numbers or a mixture of both. Press the TextBox (ab) button on the Control Toolbar to add a textbox. To size the label area, click on the upper left area of the form and hold down on the left mouse button, draw the dotted textbox.

We will name the TextBox using the three letter prefix followed by the name or phrase of the tool. For our first textbox, the name is **txtVoltage.**

Alphabetic	
(Name)	txtVoltage
Size	100, 26

The size of the textbox will be 100 wide and 26 tall and the characters inside the textbox will be aligned to the right.

- Resistor Sizing Calculator	
Voltage	

Figure 4.9 – Placing a TextBox on the Form

Pro	operties	→ ₽	х
tх	tVoltage System.Wind	ows.Forms.TextBox	Ŧ
•	21 💷 🖋 🖾		
	ReadOnly	False	^
	RightToLeft	No	
	ScrollBars	None	
	ShortcutsEnabled	True	
Ð	Size	100, 26	
	TabIndex	1	
	TabStop	True	
	Tag		
	Text		
	TextAlign	Left	
	UseSystemPasswordCh	False	
	UseWaitCursor	False	
	Visible	True	
	WordWrap	True	
			¥

Figure 4.10 – Setting the Size of the Textbox

We will place a label to the right of the **txtVoltage** textbox and call it **lblVolts.** We will make the label text Volts. The key attributes for the label are:

Alphabetic	
(Name)	lblVolts
BackColor	White
Text	Volts
Font	Arial, 12 pt

🖳 Resistor Sizing Calcul	ator	
Voltage	Volts	

Figure 4.11 – Adding another Label

	nother row of label,	ne Resistor Sizing Calculator	- • •
textbox and	l label for the current.		
The follo	wing are the key	Voltage volts	
properties.		Current amperes	
Alphabetic			
(Name)	lblCurrent		
BackColor	White		
Text	Current		
Font	Arial, 12 pt		
Alphabetic			
(Name)	txtCurrent		
Size	100, 26		
Alphabetic			
(Name)	lblAmperes		
BackColor	White		
Text	amperes		
Font	Arial, 12 pt		

Figure 4.12 – Second Row of Labels and Textbox

Inserting a Label into a Form to Post the Output

Some labels on a form are in a position to display an answer after the user inputs data and they press the command button to execute the application. To add this label, press the Label (A) button on the Control Toolbar to add a label. To size the label area, click on the upper left area of the form and hold down on the left mouse button, draw the dotted label box.

We will place a label under lblCurrent label and call it lblResistance. We will make the label text Resistance. The key attributes for the label are:

Alphabetic	
(Name)	lblResistance
BackColor	White
Text	Resistance
Font	Arial, 12 pt

🖳 Resistor Sizing C	alculator		- • •
Voltage		volts	
Current		amperes	
Resistance		ohms	
		.	

Figure 4.13 – Placing a Label for the Answer

We will insert the label for the answer to the right of **lblResistance** and name the label **lblOhmsAnswer.**

Alphabetic	
(Name)	lblOhmsAnswer
AutoSize	False
BorderStyle	FixedSingle
Size	100,26
TextAlign	Middle left

We will make AutoSize False to allow the label to size to 100 by 26 and the borderstyle FixedSingle to place a line around the answer.

Pr	operties	→ ‡	×
Ib	IbIOhmsAnswer System.Windows.Forms.Label		•
0	₹↓ 🗉 🖋 🖾		
Ŧ	Margin	3, 0, 3, 0	*
Ŧ	MaximumSize	0, 0	
Ŧ	MinimumSize	0, 0	
	Modifiers	Friend	
Ð	Padding	0, 0, 0, 0	
	RightToLeft	No	
Ð	Size	100, 26	
	TabIndex	9	
	Tag		
	Text		
	TextAlign	MiddleLeft	
	UseCompatibleTextRend	False	Ξ
	UseMnemonic	True	
	UseWaitCursor	False	
	Visible	True	Ŧ

Figure 4.14 – Label Name is lblOhmsAnswer

We will place a label to the right of the **lblOhmsAnswer** textbox and call it **lblOhms.** We will make the label text Volts. The key attributes for the label are:

Alphabetic	
(Name)	lblOhms
BackColor	White
Text	Ohms
Font	Arial, 12 pt

🖳 Resistor Sizing Ca	alculator		- • •
Voltage		volts	
Current		amperes	
Resistance		ohms	

We will place a label that contains an answer for the resistor power in a fourth row. Again, it will start with an identifying label, then a label with a border and lastly a label that describes the unit of measurement.

We will place a label under **IblResistance** label and call it **IblPower.** We will make the label text Power. The key attributes for the label are:

Alphabetic	
(Name)	lblPower
BackColor	White
Text	Power
Font	Arial, 12 pt

🖳 Resistor Sizing Ca	alculator		
Voltage		volts	
Current		amperes	
Resistance		ohms	
Power		watts	

Figure 4.16 – Label Name is lblPower

We will insert the label for the answer to the right of **lblPower** and name the label **lblWattsAnswer.**

Alphabetic	
(Name)	lblWattsAnswer
AutoSize	False
BorderStyle	FixedSingle
Size	100,26
TextAlign	Middle left

We will make AutoSize False to allow the label to size to 100 by 26 and the borderstyle FixedSingle to place a line around the answer.

🖳 Resistor Sizing C	alculator		
Voltage Current Resistance		volts amperes ohms	
Power		watts	

Figure 4.17 – Label Name is lblWattsAnswer

We will place a label to the right of the **lblWattsAnswer** textbox and call it **lblWatts.** We will make the label text Watts. The key attributes for the label are:

Alphabetic	
(Name)	lblWatts
BackColor	White
Text	Watts
Font	Arial, 12 pt

Inserting a Command Buttons into a Form

A command button is used so that a user will execute the application. Press the Command button on the Control Toolbar to add a command button. To size the label area, click on the upper left area of the form and hold down on the left mouse button, draw the command button as shown in Figure 4.18.

We will name the command button using the name is **cmdCalculate.**

Alphabetic	
(Name)	cmdCalculate
Caption	Calculate
Font	Arial, 15.75 pt
Size	133,33

🖳 Resistor Sizing Calculator	
Voltage	volts
Current	amperes
Resistance	ohms
Power	watts
Calculate	

Add a second Command button, named cmdReset is for clearing the txtName and lblGreeting objects. The third command button is to exit the program. When the user presses the Exit command button, the application closes. Notice the equal spacing between the command buttons gives a visually friendly appearance.

🖳 Resistor Sizing Calcul	ator	- • •
Voltage	volts	
Current	amperes	
Resistance	ohms	
		l l
Power	watts	
Calculate	Reset	Exit

Figure 4.19 – Insert Two More Command Buttons

Adding a Copyright Statement to a Form

At the beginning of a new program, we will expect to see an explanation or any special instructions in the form of comments such as copyright, permissions or other legal notices to inform programmers what are the rules dealing with running the code. Comments at the opening of the code could help an individual determine whether the program is right for their application or is legal to use. The message box is a great tool when properly utilized to inform someone if they are breaking a copyright law when running the code.

Finish the form with the following copyright information.

Resistor Sizing Calculator.dv copyright (c) 2011 by charles robbins

If there are special rules or instructions that the user needs to know, place that information on the bottom of the form.

🖶 Resistor Sizing Calculator	
Voltage Current Resistance	volts amperes] ohms
Power] watts
Calculate Resistor Sizing Calculator.dv	Reset Exit

Figure 4.20 – Adding a Copyright Statement

Inserting a Picture into a Form

We select the toolbox and Picturebox and we draw a box to the right of the labels that will contain the answers. We name the picturebox **imgFormula**. We scroll down on the properties window and select the three dots button at the Image property and a Select Resource window will appear.

🖳 Resistor Sizing Calcu	lator	
Voltage	volts	D
Current	amperes	
Resistance	ohms	
	0	0
Power	watts	0000

Figure 4.21 – Adding an Image

We then will import the graphic of our gas pump which we made in Microsoft Paint and saved as a bitmap image. We then press the OK button and the image will appear in the picturebox.

Select Resource	? 🛛
Resource context Local resource: Import Quear Project resource file: Resources.resx	R= E
(none) image	
	P=VA
Import	OK Cancel

The finished form is as shown in figure 4.23. Now, we will start to write the code to find the resistance and power of the resistor.

🖶 Resistor Sizing Calculator		
Voltage	volts amperes	$R = \frac{E}{I}$
Resistance	ohms watts	P=VA
Calculate Resistor Sizing Calculator.c	Reset dv copyright (c) 2011	Exit by charles robbins

Figure 4.23 – Import an Image

Adding Comments in Visual Basic to Communicate the Copyright

The comments we placed in the first three lines of the program will inform the individual opening and reading the code, but those user that may run the application without checking, the label on the bottom of the form with the copyright information is a great tool to alert the client to the rules of the program and what will the application do.

To begin the actual coding of the program, double click on the Hello command button. At the top of the program and before the line of code with Private Sub cmdCalculate_Click (), place the following comments with the single quote (') character. Remember, the single quote character (') will precede a comment and when the code is compiled, comments are ignored.

Type the following line of code:

'Resistor Sizing Calculator.vb copyright (c) 2011 by Charles W. Robbins 'This program will open a dialogue box, allow the user to type voltage and current for a resistor 'When the user clicks on the Calculate button, the resistance and power is calculated.

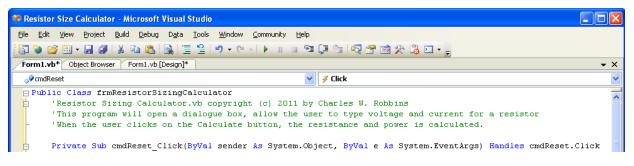
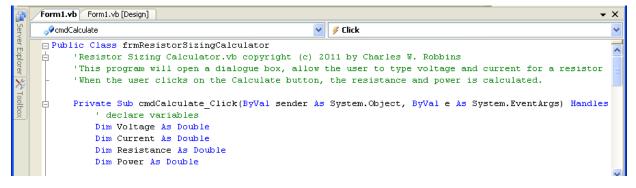


Figure 4.24 – Adding a Copyright Statement


Declaring Variables in a Program with the Dimension Statement

When we are going to use a number, text string or object that may change throughout the life of the code, we create a variable to hold the value of that changing entity. In Visual Basic, the dimension statement is one of the ways to declare a variable at the procedure level. The other two ways are the Private and Public statements, which we will use in later chapters.

In our program, we will retrieve the data from the textboxes and also we will create data from mathematical computations. We will place the values in variables called Voltage, Current, Resistance, and Power. These variables will hold numbers for calculations so we will declare them as Double Integers.

Type the following code under the cmdCalculate subroutine of the program.

' declare variables Dim Voltage As Double Dim Current As Double Dim Resistance As Double Dim Power As Double

Figure 4.25 – Declaring Variables with Dim Statements

Notice that the variable name should be a word or a phrase without spaces that represents the value that the variable contains. If we want to hold a value of one's date of birth, we can call the variable, DateofBirth. The keywords Date and Birth are in sentence case with the first letter capitalized. There are no spaces in the name. Some programmers use the underscore character (_) to separate words in phrases. This is acceptable, but a double underscore (__) can cause errors if we do not detect the repeated character.

Setting Variables in a Program

Next, we will set the variables using the equal function. We will set the numbers in the two textboxes to their variable and we compute resistance by division and the power by using multiplication.

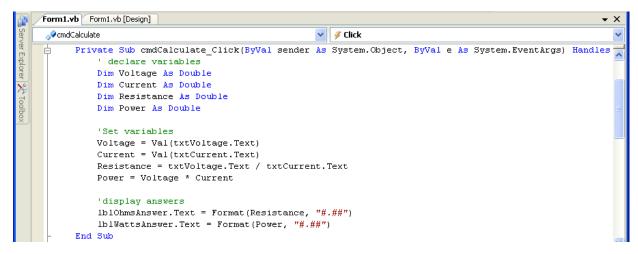
Type the following code under the "set variable" section of the cmdCalculate subroutine of the program.

'Set variables

Voltage = Val(txtVoltage.Text) Current = Val(txtCurrent.Text) Resistance = txtVoltage.Text / txtCurrent.Text Power = Voltage * Current

Form1.vb [Design] X Cinck Private Sub cmdCalculate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles i declare variables Dim Voltage As Double Dim Current As Double Dim Resistance As Double Voltage = Val(txtVoltage.Text) Current = Val(txtCurrent.Text) Resistance = txtVoltage.Text / txtCurrent.Text Power = Voltage * Current Volta

Figure 4.26 – Setting the Variables in the VBA Code


Using a Label to Communicate with Variables

The numbers that were set to the variables can now be assigned to the answer labels using the equal sign such as **lblOrmsAnswer.Text = Resistance** and the answer will appear in the form with a single border around the numbers.

Go ahead and type the following code below the set variables section.

```
'display answers
lblOhmsAnswer.Text = Format(Resistance, "#.##")
lblWattsAnswer.Text = Format(Power, "#.##")
```

We have added a new feature to the output by using the Format() function with the variable first then a comma and the format of how many decimals we would like to see in the answer. "#.##" will give us 2 decimals in the answer.

Figure 4.27 – Displaying the Answers

Resetting the Data

To clear the textboxes or labels containing the data, we will replace the date with blank strings and the date and time with the current day and time setting.

Type the following code under the cmdReset subroutine of the program

```
Reset textboxes and labels with answers
txtVoltage.Text = ""
txtCurrent.Text = ""
lblOhmsAnswer.Text = ""
lblWattsAnswer.Text = ""
```

Form1.vb*	Form1.vb [Design]*	-
o∲ cmdReset	👻 🎸 Click	
p Pr:	ivate Sub cmdReset_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) He	andles cmdH
	'Reset textboxes and labels with answers	
	txtVoltage.Text = ""	
	txtCurrent.Text = ""	
	lblOhmsAnswer.Text = ""	
	lblWattsAnswer.Text = ""	
- Enc	1 Sub	

Exiting the Program

🔗 cmd	IExit 👻 🍕 Click
	<pre>Private Sub cmdExit_Click(ByVal sender As System.Object, ByVal e As System.EventA 'Unload and exit the program</pre>
	Me.Close() End Sub
End	Class

Figure 4.29 – Exiting the Program

To exit this program, we will unload the application and end the program. Type the following code:

"Unload and exit the program Me.Close()

Running the Program

After noting that the program is saved, press the F5 to run the Resistor Sizing Calculator application. The Resistor Sizing Calculator window will appear on the graphical display as shown in Figure 4.30. Notice the appearance professional and presentation of information in a clean dialogue box.

🔜 Resistor Sizing	Calculator		
Voltage Current		volts amperes	$R = \frac{E}{I}$
Resistance		ohms	
Power		watts	P=VA
Calculate		Reset	Exit
Resistor Sizi	ng Calculator.dv (copyright (c) 2011	by charles robbins

Figure 4.30 – Launching the Program

Type the voltage and current in the textbox just as we typed as shown in Figure 4.31. If we make a mistake, we can type over the text entry or press the Reset command button to clear the textbox. Press the Calculate command button and the two answer labels will have the resistance and power for the resistor. After experimenting with our program, press the Exit command button to exit the application.

🖶 Resistor Sizing	g Calculator		
Voltage Current Resistance	3 0.1 30	volts amperes ohms	R= <u>E</u> I
Power	.3] watts	P=VA
Calculate Resistor Siz	ing Calculator.dv	Reset copyright (c) 2011	Exit by charles robbins

Figure 4.31 – Running the Program

If our program does not function correctly, go back to the code and check the syntax against the program shown in previous sections. Repeat any processes to check or Beta test the program. When the program is working perfectly, save and close the project.

There are many variations of this Visual Basic Application we can practice and obtain information from a personal computer. While we are practicing with forms, we can learn how to use variables, strings and comments. These are skills that we want to commit to memory.

* World Class CAD Challenge 90-3 * - Write a Visual Basic Application that displays a single input form, allows the user to type in their data, and when executed, the program will give the user information obtained from the computer and from mathematical computations.

Continue this drill four times using some other form designs, each time completing the Visual Basic Project in less than 1 hour to maintain your World Class ranking.