
C h a p t e r 7

Shell Scripting: Condition
Statements

In this chapter, you will learn the following to World Class standards:

1. Adding Comments
2. Defining the Program
3. Prompting the User
4. Capturing System Data
5. Creating the Conditional Statement
6. Making the Script an Executable File

 7-1

An Interactive Shell Script

A common function in programming is the conditional statement. These functions work by
triggering a specific action when certain predetermined conditions are met. For our example
program, we will be using a short, simple script that checks the system date against the user-
defined date, and then notifies the user if there is a discrepancy between the two, signifying that
there may be an error with the machine, or the user.

dotw is a program that check the day of the week against the system day
echo "This program checks the day of the week"
echo -n "What is the day of the week? Full name please."
read day
sdate=$(date +"%A")
if ["$day" = "$sdate"]
then
echo "System date is correct"
else
echo "Check system date for error"
fi

program definition
read day
user prompt
retrieve the system day

end of program

Figure 6.1 – Day of the Week Check Program

Adding Comments

Just like the example program we used in the previous chapter, this program uses many
comments inside of the script to help describe the purpose of the program as well as the
functions of individual lines of code. If we wanted we could also add copyright information
into the script by using comments.

dotw is a program that check the day of the week against the system day
echo "This program checks the day of the week"
echo -n "What is the day of the week? Full name please."
read day
sdate=$(date +"%A")
if ["$day" = "$sdate"]
then
echo "System date is correct"
else
echo "Check system date for error"
fi

program definition
read day
user prompt
retrieve the system day

end of program

Figure 6.2 – Adding Comments to Define the Program and Lines of Code

 7-2

Defining the Program

The second line of code displays the purpose of the program for the user. This is considered
proper programming etiquette, and is especially useful if there are more than one executable
shell files in a single directory. Use the echo command and enter the text in quotation marks as
shown below.

dotw is a program that check the day of the week against the system day
echo "This program checks the day of the week"
echo -n "What is the day of the week? Full name please."
read day
sdate=$(date +"%A")
if ["$day" = "$sdate"]
then
echo "System date is correct"
else
echo "Check system date for error"
fi

program definition
read day
user prompt
retrieve the system day

end of program

Figure 6.3 – Outputting the Program Definition

Prompting the User

Next we will prompt the user to supply the original data to be checked by the program. Type
echo –and then in quotation marks we ask the user for the day of the week, specifying the full
name of the day. The next line of code contains the Read command. Type read day to record
the data received from the user as variable day. Notice again that after each line of code there
is a comment describing its purpose.

dotw is a program that check the day of the week against the system day
echo "This program checks the day of the week"
echo -n "What is the day of the week? Full name please."
read day
sdate=$(date +"%A")
if ["$day" = "$sdate"]
then
echo "System date is correct"
else
echo "Check system date for error"
fi

program definition
read day
user prompt
retrieve the system day

end of program

Figure 6.4 – Prompting the User

 7-3

Capturing System Data

Before we can set up our conditional statement, we need to capture the date from the system to
a variable. First let’s define the variable as sdate. Next we need to enter a command that will
capture the system date at the exact time the program is run: for this we will use the Date
command. Type $(date + “%A”) so that the program will capture the current date into the
sdate variable. The “%A” extracts the full system day to the variable.

dotw is a program that check the day of the week against the system day
echo "This program checks the day of the week"
echo -n "What is the day of the week? Full name please."
read day
sdate=$(date +"%A")
if ["$day" = "$sdate"]
then
echo "System date is correct"
else
echo "Check system date for error"
fi

program definition
read day
user prompt
retrieve the system day

end of program

Figure 6.5 – Capturing the System Date

Creating the Conditional Statement

Now we are ready to program our conditional statement. Start by typing if, and then add
“$day” = “$sdate” inside brackets. By adding this we have defined the condition that must be
met before the action attached to our Then command will be executed. To continue, type then
and on the next line program a text string that displays a message saying that the date is correct.
If our previous condition is met, and the system date matches the date input by the user, the
program will display that message.

dotw is a program that check the day of the week against the system day
echo "This program checks the day of the week"
echo -n "What is the day of the week? Full name please."
read day
sdate=$(date +"%A")
if ["$day" = "$sdate"]
then
echo "System date is correct"
else
echo "Check system date for error"
fi

program definition
read day
user prompt
retrieve the system day

end of program

Figure 6.6 – Conditional Statement Code

The last part of the conditional statement is an action that will be triggered if the condition is
not met. For this we will use the else command, in exactly the same way we used the then
command: on the next line of code create a text string that will display a message that alerts the
user to the difference in dates. To end the conditional statement, type fi.

 7-4

 7-5

Making the Shell Script an Executable File

Now that we are done coding in the text editor, we can save the file as dotw.exe or just dotw. If
we save the file as dotw, we can convert it to an executable file by typing in the Bash command
chmod ugo+x dotw. To run the program, type sh dotw. When prompted for the date, type the
correct or incorrect date to see if the program behaves as expected. If not you should recheck
your script.

* World Class CAD Challenge 44-7 * - Write a Script that displays two message boxes, the
first will contain the script name, copyright date and author. The second message will
display information from the computer.

Continue this drill four times using some other messages, each time completing the
VBScript in less than 30 minutes to maintain your World Class ranking.

