
 6-1

C h a p t e r 6
 

Equilibrium in Two 
Dimensions 
 

 
In this chapter, you will learn the following to World Class standards: 

 

1. The Ladder Against the Wall 
2. The Street Light 
3. The Floor Beam 
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The Ladder Against the Wall 
________________________________________________________ 
 
Beginning with this chapter, we will explore situations where the object is in equilibrium, where 
there is no movement of the part, and therefore we find the sum of the forces and the moments 
(torque) will equal zero. A structure at rest is a very common state for many products such as a 
microwaves, televisions or lampposts. We design these manufactured goods to stay still or at a 
constant velocity and as we say in engineering terms, remain static. In this section of the 
textbook, we will present conditions where there are forces such as cables, beams, wind and 
water that act on an entity, the result will be balance, and the assembly will continue to rest. 
After completing this unit, we will be able to determine by measurement all the external 
mechanical forces acting on the object. 
 

In our first virtual experiment, we will place a 16-foot (192 inch) ladder against a wall. The 
ladder weighs 36 pounds (lbs) and we are trying to compute the magnitude and direction of the 
force on the ground and at the wall when a 350-pound force is 14 feet up the ladder. This would 
place a person with their tools at the second last rung and ready to step onto the roof of the 
building. This is a very practical problem and many designers and engineers will want to know 
the answers. 
 

Replicating an experiment in 
lab. We can duplicate this entire 
problem in lab by scaling the 
project. We can make 1-foot 
equals 1-inch, so the ladder will 
be 16 inches long when we angle 
a small board representing the 
ladder at 65 degrees against a 
board. The weight of the small 
board measuring 0.125 x 1.0 x 
16.0 will be negligible, so we 
place a 0.36 lb. weight, 8 inches 
up the ladder. We can place a 3.5 
lb weight, 14 inches up the ladder. 
  
 Figure 6.1 � Conducting the First Experiment 
 
Our lab instructor will want to provide a measuring device to sense the weight pressing against 
the horizontal board that represents the wall.  A small pressure scale will work fine, and we can 
compare the scaled answer, which is 1/10 of the real problem. Multiply the answer we get in the 
lab with the solution in this segment of the chapter to build our confidence to solve mechanical 
problems in the Computer Aided Design (CAD) program. 
 
In solving for the unknown quantities in a Free Body Diagram, we will observe two 
fundamentals in the experiment. First, that the sum of the forces will equal zero. When we place 
the subcomponents of the forces in the graphic, the sum of the forces along each axis is zero. 
We write this mathematically using the summation symbol Σ, which is the Greek letter sigma. 
In Mechanics, we may see the following written in the calculation. 
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0=∑ XF  
0=∑ YF  
0=∑ ZF  

 

Which means the sum of the forces in the X direction is zero, the sum of the forces in the Y 
direction is zero and the sum of the forces in the Z direction is zero. 
 
The other fundamental to maintain an object at rest or in uniform velocity besides the sum of 
the forces equals zero is that the sum of the moments (torques) will be equal to zero, too. This is 
written as: 
 

0=∑ iτ  
 

Under these conditions, the body will not have an accelerated rotation, which would occur if the 
sum of the torques did not add up to zero. In our experiment, we can visually check when either 
fundamental rule is not occurring. In the research project shown in Figure 6.1, both 
fundamentals apply and the Free Body Diagram will solve for the forces on the wall and on the 
ground. 
 
Now we will modify the experiment so we can examine the static problem with a Free Body 
Diagram. This type of illustration allows us to draw the force vectors that affect the object and 
use simple geometry to find the solution to the practical exercise. Then designers and engineers 
will apply the data in a couple of ways. If the other items in the environment control what shape 
the product will be, then the project designer or engineer will select a stronger material that has 
the appropriate characteristics to pass the qualification tests and survive the installation and 
continual usage throughout the years. Maybe, the engineer can change the form of the product 
using details like gussets and ribs to enhance the overall strength. Either way, the Free Body 
Diagram will tell us what forces are in the interacting members of the apparatus. 
 

When computing moment arm, a 
measurement of force times 
distance, which is recorded in 
foot-pounds or inch pounds, we 
may project the force along the 
rigid body in the same line as the 
force vector. Thus, we will move 
the force to one of the axis so that 
the force is perpendicular to the 
Moment Arm we are trying to 
compute. At the 16-foot ladder, 
we are looking for a numeric 
value that is not 90º to the ladder, 
but to the wall, so we propel the 
line to the left towards the Y-axis. 
In Figure 6.2, the force is now at a 
right angle to the Y-axis. 

 

  
 Figure 6.2 � Forces Perpendicular to the Moment Arm 
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When working with an equation that involves torque, we will consider the forces rotating 
counterclockwise as positive and those that are clockwise as negative. 
 
In our Computer Aided Design 
(CAD) program, draw a two 
dimensional free body diagram 
showing the wall, the known 
forces we already mentioned, and 
label the two forces L1 and L2, 
which are the reactions to the load 
on the wall and on the ground. 
(See Figure 6.3) This problem has 
two unknowns, L1 and L2. First, 
we will discover the answer to 
L2, by solving for the sum of the 
forces and sum of the moments 
around L1. By using this 
technique, we only have to solve 
for one unknown at a time. After 
solving for L2, we will use the 
sum of the forces to determine the 
resultant at L1. Remember L1 
will be equal in magnitude but 
opposite in direction to the 
resulting load at that point.  
  
 Figure 6.3 � CAD Drawing of the Ladder Problem 
 
To find the unknown force L2, we are going to draw another diagram just to the right of the first 
(See Figure 6.4) and project the forces up along the X and Y-axis.  The force L2 is 174.011 
inches up the Y axis.  The 350 pound force representing the person and tools and projected to 
the X axis is 69.7537 inches up the X axis. The weight of the ladder projected to the X axis is 
40.5714 inches up the X axis. Now in order to find L2, we will multiply 350 times 69.7537, 
which equal 24413.795 inch pounds. Going in the same direction, we will multiply 36 times 
40.5714, which equal 1460.5704 inch pounds. Add the two sums together and we get 
25874.3654 inch pounds. 
 

0011.1742.5714.4036.7537.69350 =×−×+×=∑ INLINLBSINLBSiτ  

 
0011.1742.~3654.25874 =×− INLLBSIN  

 
LBSINLBSINL 6938.148011.174~3654.258742 =÷=  

 
Now the sum of the Moment Arm to the right must be offset by the sum of the moment arm to 
the left.  To find the value of L2, we will divide 25874.3654-inch pounds by 174.001 inches, 
which equals 148.6938 pounds. We know that the ladder has passed manufacturing tests to 
withstand 148.6938 pounds of force at the top of the ladder rails, but will the wall hold the 
load? If we did not know, we would run a test. 
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The next step is to use this number to determine the sum of the forces in the X and Y directions 
at point L1. The total of the forces in the X direction is 148.6938 pounds and the sum of the 
forces in the Y direction is 36.0000 and 350.000, which total 386.0000 pounds. 

 

0135036 =+−−=∑ YY LLBSLBSF  

 
LBSL Y 0000.3861 =  

 
 

 
 
Figure 6.4 � The 2D Free Body Diagram 
 
To find the resulting force that is resisting the ladder on the ground, we will also figure the 
force of L1 in the X direction. The sum of the forces in the X direction is: 
 

016938.148 =+−=∑ XX LLBSF  
 

LBSL X 6938.1481 =  
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We can use the CAD program to 
compute the forces acting on L1. 
In Figure 6.5, we draw the 386-
pound force in the negative Y 
direction and 148.6938 in the 
negative X direction. Using 
vector addition, we draw a 
resulting vector and use the Align 
dimensioning tool on the 
Dimension toolbar to compute 
both the magnitude and 
orientation of the force that the 
ladder places on the ground. To 
discover the force L1, the figure 
will be equal in size and reverse 
in course by 180º. So the answer 
is 413.6494 pounds and 68.93º in 
above the X � axis.   
  
 Figure 6.5 � The Resultant Force, L1 
  
* World Class CAD Challenge 10-12 * - Draw a 16 foot (192 inch) ladder leaning at 65º 
against a vertical wall  Compute the forces L1 and L2 that resist the weight of the 36 
pound ladder with a 350 pound load at 14 feet up the ladder. Save the drawing as 
Equilibrium Problem 5.dwg 
 
Continue this drill four times using some forces you have determined, each time 
completing the drawing under 5 minutes to maintain your World Class ranking.   
 

The Street Light 
________________________________________________________ 
 

 The next exercise that we will 
analyze is a common application 
of a load being held by a 
cantilever arm outcropping from a 
vertical pole. A street light, a stop 
light, a crane or a plant hanger, 
are all structures that embrace a 
hanging load, where the beam is 
attached only on one end. In 
many cases, as in this exercise, a 
cable runs at an angle from the 
end of the cantilever beam to a 
position on the vertical pole, and 
thus the cable shares the weight. 
  
 Figure 6.6 � The Street Light 
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In this problem, we will talk about three concepts in direction of forces on a material. The terms 
we want to know after this chapter are tension, compression and shear. Tension is a pulling 
action where the fibers of the material are stretching apart. Compression is a pushing action that 
has the strands of material coming together. Tension and compression are forces that are 
opposite in direction when we examine them in a detail. In this exercise, we do have a situation 
where the forces are acting in shear. When the cantilever arm holding the lamp intersects with 
the vertical pole, there is a shear force acting at 90 degrees to the cross section of the upright 
post. In later chapters, we will learn how to determine whether the slice of horizontal material in 
the pole will be able to withstand the shear load. 
 

The arm coming out from the 
vertical pole in Figure 6.7 is in 
compression and the cable is in 
tension. The load going down the 
pole is equal to the load of the 
lamp. In our example, we will 
eliminate the weight of the 
cantilever arm itself and just 
concentrate of the heaviness of 
the lamp. Now there are many 
dimensions on the lamppost, but 
the only one we need to 
concentrate upon in this problem 
is the angle between the cable in 
tension and the cantilever arm in 
compression. 
  
 Figure 6.7 � Cantilever Load Diagram  
  
The tension in the cable counteracts the vertical load of the lamp and the horizontal load of the 
cantilever arm. The angle between the cable in tension and the cantilever arm in compression is 
critical in this design. The larger the angle at the end of the triangle, the smaller the tension will 
be in the cable, and the compression in the cantilever arm, but the vertical pole will need to be 
taller. On the other extreme, the smaller the angle at the endpoint of the triangle, the larger the 
amount of tension in the cable and compression in the cantilever arm. What will happen in this 
type of design when the cable is removed? Where will the tension be located? Where will the 
compression force go? 
 
In our Computer Aided Design (CAD) program, draw a 75-unit force vector downward. Draw a 
horizontal line to the left and a 26.6-degree line above the level line. Offset the horizontal line 
75 units upward and extend the angled line so that they meet. Go ahead and erase the offset line. 
Drop a 75-unit line back down to the horizontal line and we will have a drawing similar to that 
as shown in Figure 6.8. Label each line and angle using our dimensioning tools. The tension in 
the cable for our problem is 167.7051 pounds and the compression in the beam is 150 pounds. 
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Replicating an experiment in 
lab. We can duplicate this entire 
problem in lab by scaling the 
project. We can make 0.1 pound 
equal 10 pounds, so the weight in 
the lab will be 0.75 pounds when 
we angle create the triangle. A 
heavy string or cord will easily 
hold the weight. The weight of 
the piece of wood acting as our 
cantilever arm will be negligible. 
Place the spring scale in line with 
the cable. As we measure the 
tension in the cable for the 
experiment, change the angle at 
the end of the triangle, so we can 
prove the relationship between the 
tension in the cable and the angle 
of intersection. 

 

  
 Figure 6.8 � Equilibrium Diagram  
 
* World Class CAD Challenge 10-13 * - Draw a lamppost that has a cantilever arm at 
least 14 feet above the ground. Attach a cable to the end of the arm and at 26.6º, extend 
the cable to the vertical pole. Compute the tension in the cable, the compression in the 
arm and the force transmitted down the lamppost. Save the drawing as Equilibrium 
Problem 6.dwg 
 
Continue this drill four times using some forces you have determined, each time 
completing the drawing under 5 minutes to maintain your World Class ranking.   
 

The Floor Beam 
________________________________________________________ 
 

In the next exercise, we will examine the forces on a floor beam like we would see in a house or 
on a deck. In Figure 6.9, we will set a 250-pound filing cabinet on the floor, with the center of 
the load being 60 inches or 5 feet from the left support. This floor has 2 x 10 floor joists that are 
sitting on 2 x 12 supporting beams spaced 144 inches or 12 feet apart. The floor joists are 
spaced 16 inches apart. We can observe in Figure 6.9 that beam problems are very common and 
practical engineering problem that we may face every day. Therefore, we must have the ability 
to perform these calculations without hesitation or error. 
 
The techniques to reach a solution to the unknown forces are essentially the same as we did 
when solving the ladder exercise. We need to draw an equilibrium diagram, label the loads, the 
unknown resulting forces and the distances between the load and the supporting forces, R1 and 
R2. After making a diagram that is dimensionally correct, then we will solve for the resultant 
force R2 by examining the torque in the setup around the force R1. Since R1 is zero distance 
from the rotation point, the unknown value R1 is eliminated in this first inspection. 
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In Figure 6.10, we first draw the 
floor beam and filing cabinet in 
our CAD program. In this 
chapter, we will just analyze the 
resulting forces at the 2 x 12 
supporting beams, but in later 
chapters, we will examine the 
cross section of the 12-foot long, 
2 x 10 joists to determine whether 
they can carry such a load, or at 
what point they would fail. In the 
figure, we dimension the 
distances between entities using 
inches, but we could pick feet 
instead. 
  
 Figure 6.9 � Equilibrium Diagram 
 

 
 
Figure 6.10 �Diagram of the Floor Beam 
 
When we create the equation for the sum of the torque that is centered on the point at R1, which 
equals zero, we will multiple the 250 pounds times 60 inches and subtract the product of R2 
times 144 inches. We write the problem as: 
 

0.1442.60250 =×−×=∑ INRINLBSiτ  
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0.1442~15000 =×− INRLBSIN  
 

150001442 =×R  
 

LBS 104.1667.144~150002 =÷= INLBSINR  
 
The sum of the forces in the floor beam problem is the total of R1 and R2 minus 250 pounds 
equal zero. We write the equation as: 
 

025021 =−+=∑ RRFY  
 

02501667.1041 =−+ LBSLBSR  
 

LBSLBSLBSR 8333.1451667.1042501 =−=  
 

Replicating an experiment in 
lab. We can duplicate this entire 
problem in lab by scaling the 
project. We can make 1 pound 
equal 100 pounds, so the weight 
in the lab will be 2.5 pounds when 
we place the load on the beam. 
The weight of the piece of wood 
acting as our beam will be 
negligible. The horizontal beam 
can rest on two scales, so we can 
measure the forces at R1 and R2.  
You can move the load on the 
beam to develop an idea of what 
will happen when the weight is 
positioned differently along a 
beam. 

 

  
 Figure 6.11 �Equilibrium Diagram 
  
* World Class CAD Challenge 10-14 * - Draw a  2 x 10 joist on 2 x 12 supports that are on 
12 foot centers. Computer the resulting forces R1 and R2 for a 250-pound load. Save the 
drawing as Equilibrium Problem 7.dwg 
 
Continue this drill four times using some forces you have determined, each time 
completing the drawing under 5 minutes to maintain your World Class ranking.   
 


