
 7-1

C h a p t e r 7

Making a Complete Detail

In this chapter, you will learn how to use the following AutoLISP
functions to World Class standards:

1. Placing Text on Drawings as Easy as Lines and Circles
2. Starting the Code by Launching the Visual LISP Editor
3. Saving the Object Snap Settings and Then Turning Them Off
4. Using Getpoint to Obtain a Point on the Graphical Display
5. Using Initget to Setup Keywords for the Getkword Function
6. Using Getkword to Obtain Text from the Keyboard
7. Using the If Function to Make Decisions in a Program
8. Using Getreal to Obtain a Real Number from the Keyboard
9. Using Getint to Obtain an Integer from the Keyboard
10. Using Initget, Getkword and the If Function to Set Variable

Values
11. Creating Layers with the Visual AutoLISP Command

Function
12. Doing the Math in Visual AutoLISP
13. Making Point Assignments in Visual AutoLISP
14. Drawing in Visual AutoLISP
15. Ending the Program
16. Saving the Program
17. Loading the Program

 7-2

Placing Text on Drawings as Easy as Lines and Circles

In this chapter, we will proceed to make a more difficult detail so that by the end of this
textbook we will be making entire drawings with the Visual AutoLISP code. This exercise has
been a favorite of the architectural design students when they construct custom wall sections
with their own routine. In Figure 7.1, we see a partial wall section, but many students have
added more detail over the years to develop a more usable tool. In the problem, we will draw a
footer, concrete block, sill plate, joist, flooring and wall.

We identify every endpoint of the lines in the footer with a “P” and a number. We continue to
label the vertices when the first block is shown on the detail, but we will not continue
cataloging the rest of the blocks, since we will array the first concrete block for the number of
courses in the foundation wall. Next, we add the sillplate, joist, floor and wall. There are
dimensions shown on the sketch that will match the questions the user will be asked. To the
right of the footer in Figure 7.1, we show what the footer width (fw) or the sillplate width
(sillplate) will be, when the user selects an 8 inch or 12 inch block width. The next sketch
shown in Figure 7.2 illustrates the x and y grid that will make up the coordinates for every
point.

Figure 7.1 – Sketch of the Wallsection

 7-3

Figure 7.2 – X and Y Grid

This program will have every section of the Construction Code, including some new twists. We
will create layers to place the different parts on the drawing. We will draw a concrete block and
array the entities to create a foundation wall. We will draw arcs. The programming code will
use every step in the Construction Code process. In the table below, we can see those steps
listed for our benefit.

Step 1 Start the program
Step 2 Drawing setup
Step 3 User input
Step 4 Do the math
Step 5 Point assignments
Step 6 Lets draw
Step 7 End the program

The math on this problem is very simple, so we will do all the procedures in order on this
exercise. The first step we need to take is to launch the Visual LISP Editor in AutoCAD.

 7-4

Starting the Code by Launching the Visual LISP Editor

Open the Visual LISP Editor
and on the first line type the
comment

;;; wallsection.lsp

The program name is always
on the first line of the code.
The semicolons cause the
statement to become a
comment so the line of code
will not be read.

 Figure 7.3 – Starting the Wallsection Program

The next comments in the program will be the details concerning what the routine will do. In
this program, there are comments after almost every line of code.

Next we will create an
AutoCAD Message by
taking the information listed
in the comments and placing
the text in the alert function.
On the first line of the alert
expression, the program and
the copyright information is
keyed.

 Figure 7.4 – Adding the Alert Expression

Add a new comment

;;; start the program

Then we start the program
with the defun function,
which means define function.
Begin with the open
parenthesis then defun, then
a c: which will allow the
program to run on the
AutoCAD command line.

 Figure 7.5 – The Defun Expression

Practice typing the following examples of the alert function at the command line of AutoCAD.

 7-5

Function Name Description

alert AutoCAD Message

The alert function will
create an AutoCAD message
window appear on the
graphical display with an
OK button to close the
message window.

Examples
At the beginning of the
program

(alert "wallsection.lsp -
copyright 1999 by charles
robbins. type wallsection to
start")

Window appears on the
graphical display

As an error prompt (alert "Error: Type units in
inches”)

Window appears on the
graphical display

Next type wallsection which will be the execution symbol to start the program. Keep in mind
the alert message that stated “type wallsection to start”. The alert message text and the defun
symbol must match. The open and closed parenthesis “()”following the wallsection enclosing
nothing means there will not be any defined arguments or local variables for this program.
After that, we need to make changes to the AutoCAD System Variables that may interfere with
the running of the code and automatically drawing the lines and arcs perfectly.

Practice typing the following examples of the defun function at the command line of
AutoCAD.

Function Name Description

defun Define Function
The define function leads off
the beginning of the
program

Examples
Place a c: in front of the
program, hello. Allows hello
to be typed at the keyboard to
execute the code

(defun c:hello (/) (print “Hi
Ya All”))

Answer: C:HELLO
Type: hello
Returns: “Hi Ya All”

When the code is used inside
another program, do not place
the c: in front of the program
name

(defun hello (/) (print “Hi
Ya All”))

Answer: HELLO
Type: (hello)
Returns: “Hi Ya All”

Saving the Object Snap Settings and then Turning Them Off

In the next section of the code, we will turn off the drawing Object Snaps so they cannot
possibly interfere with the insertion of the drawing notes. In order to accomplish this task, we
you need to understand the getvar and the setvar functions. The getvar function will obtain a

 7-6

drawing setting, so we can save the number or text string for future use. The setvar function
will allow us to change a system variable, like turning off the Object Snaps.

Start with a new comment

;;; drawing setup

And type the code

(setq osm (getvar “osmode”))

; gets osnap settings and
assigns to osm

 Figure 7.6 – Saving and Turning Off Object Snaps

Next, we will turn off the drawing’s object snaps by setting the system variable “osmode” to 0
using this line of code. Add the comment as shown.

(setvar “osmode” 0) ; turns osnap settings off

Let’s talk about the expression, (setq osm (getvar “osmode”)). The function setq means set
quotient and we will use the function to create a variable osm which stands for object snap
mode, a variable name that we just made up. The variable osm will hold the integer
representing the “osmode” system variable’s setting. To get the number use the function getvar
followed by the name of system variable inside a set of quotes.

To turn off a system variable in many cases in setting the variable to zero. In the expression,
(setvar “osmode” 0), the function setvar followed by a system variable inside a set of quotes
like “osmode” then a 0 will result in turning off the Object Snap settings.

Practice typing the following examples of the setq, getvar and setvar functions at the
command line of AutoCAD.

Function Name Description

setq Set Quotient
Allows the user to assign a
real number, integer, string
or list to a variable

Examples
Set the variable a the text
string World Class CAD

(setq a “World Class CAD”)

Answer: “World Class
CAD”

Set the variable counter the
integer 0

(setq counter 0)

Answer: 0

Set the text height variable
txtht the real number 0.125

(setq txtht 0.125)

Answer: 0.1250

Set the point variable sp the
list of 0,0,0

(setq sp (list 0.0 0.0 0.0))

Answer: (0,0,0)

 7-7

Function Name Description

getvar Get a variable
Allows the user to obtain a
system variable setting from
an AutoCAD drawing

Examples
Turn on the endpoint,
midpoint, quadrant,
intersection and
perpendicular Object
Snaps

(setq osm (getvar “osmode”)) Answer: 179

Get the AutoCAD
version number

(setq osm (getvar “acadver”)) Answer: "16.2s (LMS
Tech)"

Function Name Description

setvar Get a variable
Allows the user to obtain a
system variable setting from
an AutoCAD drawing

Examples
Turn off the Object
Snaps

(setvar “osmode” 0)) Answer: 0

Using Getpoint to Obtain a Point on the Graphical Display

In the User Input section of the Construction Code, we need to expand into new areas besides
just requesting the starting point and the getting a measurement using the getreal function as we
did in the first eight programs.

The first function we will
examine together is getpoint.
This tool will allow the
program user to select a
point on the graphical
display with their mouse.
Following getpoint is a text
string usually written is a
commanding or questioning
format.

 Figure 7.7 – Using the Getpoint Function

The user input of selecting a point begins with a comment.

;;; user input

 7-8

Then type the following code:

(setq sp (getpoint “\nPick the starting point ”))

We use the setq expression to assign the three point list (X, Y and Z) to the variable sp
representing the starting point. After the function getpoint, a programmer has the option, in
which we have chosen, to add a line of text prompting the user to “Pick the starting point”
and we also modified the prompt in a small way. Notice that in front of the capital P in the
word Pick, a “\n” is added. That will place the command “Pick the starting point” without
containing those two characters to start on a new command line in the AutoCAD program.

Periodically we will work at an organization that wants their details in the exact location of their
drawing. When we face a programming problem such as this the starting point expression will
change. First instance, let us make believe that the detail at this company starts at the X and Y
coordinates 14, 10. Then in this wallsection code, we would change the starting point
expression to:

(setq sp (list 14 10 0))

This will place the beginning of the notes in an exact position for every occasion.

Practice typing the following examples of the setq and getpoint functions at the command line
of AutoCAD.

Function Name Description

setq Set Quotient
Allows the user to assign a
real number, integer, string
or list to a variable

Examples
Set the variable a the text
string World Class CAD

(setq a “World Class CAD”)

Answer: “World Class
CAD”

Set the variable counter the
integer 0

(setq counter 0)

Answer: 0

Set the text height variable
txtht the real number 0.125

(setq txtht 0.125)

Answer: 0.1250

Set the point variable sp the
list of 0,0,0

(setq sp (list 0.0 0.0 0.0))

Answer: (0,0,0)

Function Name Description

getpoint Get a Point

Allows the user to obtain a
point on the graphical
display by selecting with a
mouse

Examples
Get a starting point (setq sp (getpoint "\nPick

starting point"))
Answer:
Pick starting point
Then select a point and the
will return a list like:
(30.471 28.4052 0.0)

 7-9

Using Initget to Setup Keywords for the Getkword Function

Whenever we want to use the
getkword function which
uses keywords for the reply
to the program’s command
prompt, we need to use the
initget function. We will use
the function to determine
what types of tolerances are
placed in the series of notes
on the drawing when the
program is run.

 Figure 7.8 – Adding a Initget Expression

Construction Note:

At this stage of the program, we know that the user needs to choose whether the house will have
8 inch or 12 inch blocks in the foundation.

So type the following compound expression:

(initget 1 “8 12”)

The number behind the initget function determines the type of entry that will be accepted. Most
of the time, we will use a 1, meaning that the user cannot type a null entry. There are other bit
codes used less often, shown in the table below.

Bit Meaning
1 Prohibits a NULL input
2 Prohibits input of zero (0)
4 Prohibits negative values.
8 Allows the user to enter a point

outside the drawing limits
16 Not used
32 Shows dashed lines when

displaying rubber-band lines or
boxes

64 Ignores Z coordinate
128 Allows unpredictable input

After the placing the input option control bit, the keywords are placed inside quotes. In our
problem, we want either a 8 or 12, so the section of the code is written “8 12”.

Practice typing the following examples of the initget function at the command line of
AutoCAD.

 7-10

Function Name Description

initget Input Options for
User Input Functions

Define the keywords for the
getkword function

Example
Allow the user to type yes (y)
or no (n) at the keyboard

(initget 1 “y n”) Returns: nil

Allow the user to type 8 or 12
at the keyboard

(initget 1 “8 12”) Returns: nil

Using Getkword to Obtain Text from the Keyboard

When we want the user to
type a text string that
matches a certain list we
present in the question, we
use the getkword function.
The user can type any entry
at the keyboard, but the only
one matching one of the
keywords will be accepted.
The getkword expression is
set within the (setq bw…….
) code.

 Figure 7.9 – Using the Getkword Function

So type the following compound expression:

(setq bw (atoi (getkword “\nWhat is the block size? [8 12] ”)))

The information that the user types with the keyboard is stored in the variable name bw. Again
the user input commands and questions are aligned in the LISP routine to allow the commands
and questions to line up neatly on the command line in AutoCAD when the program is running.
Aligning the expressions as shown in Figure 7.9 also gives us, the programmers the ability to
easily check for syntax errors.

At the end of the question, place the possible answers to the question in brackets, so the user
does not have to guess what the proper response is. In our case only 8 or 12 will work.

The atoi function in front of the getkword expression will convert the text string “8” or “12”
depending on the user response to an integer. Shown below is a table showing functions that
will convert from real numbers, integers and text strings to another format. These are some of
the easiest functions to use.

 7-11

Convert
from

To

Real Integer String Real fix rtos
Integer float itoa
String atof atoi

Figure 7.10 – Conversion Functions

Practice typing the following examples of the getkword and atoi function at the command line
of AutoCAD.

Function Name Description

getkword Get a Key Word

Allows the user to obtain a
keyword text string by
allowing the user to type at
the keyboard

Examples
Responding the proper
keyword

(setq bw (getkword “\nWhat
is the block size? [8 12]
”))

Answer:
Do you want tolerances?
Then type: 8
“8”

Not responding the proper
keyword

(setq fw (getkword “\Footer
width? [8 12] ”))

Answer:
Do you want tolerances?
Then type: 1
Invalid option keyword and
Repeats the initial question

Function Name Description

atoi A Text String to an
Integer

Will convert a text string to
an integer

Examples
Change “16” to 16 (atoi “16”)

Answer: 16

Change “24” to 24 (atoi “24”)

Answer: 24

Change the text string in
variable fw to 16

(setq fw “16”))
(atoi fw)

Answer: 16

 7-12

Using the If Function to Make Decisions in a Program

Whenever we are confronted
with a making a choice
between two or more options
in computer programming,
the if function is a very
popular solution to this
challenge. The if function
will execute the statements
within the then section of the
if expression when the
logical test is true, or carry
out the else section if the
logical test is false.

 Figure 7.11 – The If Function with Then and Else Statements

Construction Note:

We will use the setq function to obtain a footer width, which is twice the block size. If the
block size is 8 inches then the footer height will be 2 x 8 inches or 16 inches. If the block size is
12 inches then the footer height will be 2 x 12 inches or 24 inches. In this exercise we can use
the answer to one question as the solution to other inputs.

The if function is arranged to work in a more complex fashion than other AutoLISP tools. If is
typed directly after the open parenthesis. Then an expression containing the logical test is
written right after the if. The logical expression tests for a true or false response. When a
program user answers the question “What is the block size [8 12]”, then the 8 or 12 is stored in
the variable bw. So in the logical test we are asking does the text string “8” equal “8”. Of
course the answer is true and the if function will execute the expression in the next set of open
and closed parentheses.

So type the following compound expression for the Wallsection routine:

(if (= bw 8.0) (setq fw 16.0 sillplate 5.5)(setq fw 24.0 sillplate 7.5))

The setq function can be written as shown in Figure 7.11 where there is a series of variables
with a definition following each holder of changeable data. Therefore if the logical test of (= bw
8.0) is true, then fw will contain 16.0 and sillplate will hold 5.5. This if expression contains an
or else phrase for a logical test result of false, so if the logical test of (= bw 12.0) is false, then
fw will contain 24.0 and sillplate will hold 7.5.

Practice typing the following examples of the if and = functions at the command line of
AutoCAD.

 7-13

Function Name Description

if If Statement

The if function will execute
the functions within the then
section of the if expression
when the logical test is true
and within the else section of
the if expression when the
logical test is false

Example
If statement with just a then
section with a logical test
equally true

(setq q1 “y”)
(if (= q1 “y”) (alert “Hello”))

Answer: “Hello”

If statement with just a then
section with a logical test
equally false

(setq q1 “n”)
(if (= q1 “y”) (alert “Hello”))

Answer: nil

If statement with a then and
or else section with a logical
test equally false

(setq q1 “n”)
(if (= q1 “y”) (alert “Hello”)
(alert “Good-bye”))

Answer: “Good-bye”

Function Name Description

= Equal To
Logical test determining
whether the first value is
equal to the second value

Examples
Using decimals (= 4.5 4.5) Answer: T (true)
Using text strings (setq q1 “y”)

(= q1 “y”)
Answer: T (true)

Using text strings (setq q1 “n”)
(= q1 “y”)

Answer: F (false)

Using Getreal to Obtain a Real Number from the Keyboard

To ask the question, “What is
the text height”, we will use
the getreal function. We use
getreal to allow the LISP
program user to type a
number containing decimals
with their keyboard. The
getreal expression is set
within the (setq txtht …….)
code.

 Figure 7.12 – Using the Getreal Function

 7-14

So type the following compound expression:

(setq fh (getreal “\nWhat is the footer height ”))

The information that the user types with the keyboard is stored in the variable name fh. We will
never pick a variable name that matches an AutoCAD command.

Whenever we are not quite sure whether the answer is going to be a whole number or a decimal,
we will use the getreal function. Using another function which will only allow whole numbers
will never allow the acceptance of a decimal.

If you look at the Visual LISP Editor in Figure 7.12, you will notice that we dressed the last two
expressions so that the questions line up perfectly. You will pick up on this characteristic when
the program is running and the typed answers to the questions line up neatly.

Practice typing the following examples of the getreal function at the command line of
AutoCAD.

Function Name Description

getreal Get a Real Number
Allows the user to obtain a
real number by allowing the
user to type at the keyboard

Examples

Ask for a number, user types a
whole number and the reply is
changed to a real number

(setq txtht (getreal "\nWhat
is the text height?”))

Answer:
What is the text height?
Then type: 1
1.0

Ask for a number, user types a
fraction and the reply is
changed to a real number

(setq txtht (getreal "\nWhat
is the text height?”))

Answer:
What is the text height?
Then type: 1/8
0.125

Using Getint to Obtain an Integer from the Keyboard

We use getint to allow the
LISP program user to type a
whole with their keyboard.
The getreal expression is set
within the (setq courses ….)
code. If the user does not type
a whole number, the
AutoCAD program returns
with “Requires an integer
value” and will repeat the
original question.

 Figure 7.13 – Using the Getint Function

 7-15

So type the following compound expression:

(setq courses (getint “\nHow many courses of block? ”))

Practice typing the following examples of the getint function at the command line of
AutoCAD.

Function Name Description

getint Get an Integer
Allows the user to obtain an
integer by allowing the user
to type at the keyboard

Examples

Asking a question (setq coats (getint "\nHow
many coats of enamel?
”))

Answer:
How many coats of enamel?
Then type: 1
Returns: 1

Asking a question and
inputting a real number

(setq coats (getint "\nHow
many coats of enamel?
”))

Answer:
How many coats of enamel?
Then type: 1.0
Returns:
Requires an integer value
and
How many coats of enamel?

Using Initget, Getkword and the If Function to Set Variable Values

Construction Note:

We will use the setq function to obtain the floor joist size, which can be 2 x 10, 2 x 12, 2 x 16
or 2 x 20. When the joist size is selected, we will set the actual wood size for the 2 x 10 to be
1.5 x 9.25, for a 2 x 12 to be 1.5 x 11.25, for a 2 x 16 to be 1.5 x 15.25, and for a 2 x 20 to be
1.5 x 19.25.

Again we will use the Initget
function to create a list of text
choices for the next line of
code using the getkword
function. Type the following:

(initget 1 "10 12 16 20")

This will allow user to type
the text strings 10, 12 16 or
20.

 Figure 7.14 – Determining the Joist Size

 7-16

Then we type the getkword code and set the answer to the variable joist. Type the following:

(setq joist (getkword "\nWhat is the size of joist, 2 x [10 12 16 20] "))

Right after assigning the text value to the variable joist, then we will use the if function to
reassign the more complex dimension of the true wood size to the variable joist. Although this
technique uses more lines of code, the user does not have to remember exact joist dimensions
but only their trade designations. Type the following lines:

(if (= joist "10") (setq joist 9.25))
(if (= joist "12") (setq joist 11.25))
(if (= joist "16") (setq joist 15.25))
(if (= joist "20") (setq joist 19.25))

Now that the joist height dimension is set, we will need to inquiry about the floor thickness.

Again we will use the Initget
function to create a list of text
choices for the next line of
code using the getkword
function. Type the following:

(initget 1 "75 100 125 ")

This will allow user to type
the text strings 75, 100 or 125.

 Figure 7.15 – Determining the Floor Size

Then we type the getkword code and set the answer to the variable floor. Type the following:

(setq floor (getkword "\nWhat is the thickness of the floor, [75 100 125] "))

Right after assigning the text value to the variable floor, then we will use the if function to
reassign the exact dimension of the true wood size to the variable floor. Although this technique
uses more lines of code, the user does not have to type the decimal at the command line. Type
the following lines:

(if (= floor "75") (setq floor 0.75))
(if (= floor "100") (setq floor 1.00))
(if (= floor "125") (setq floor 1.25))

Now that the floor thickness is set, we will need to inquiry about the wall thickness.

 7-17

Again we will use the Initget
function to create a list of text
choices for the next line of
code using the getkword
function. Type the following:

(initget 1 "4 6 ")

This will allow user to type
the text strings 4 or 6.

 Figure 7.16 – Determining the Wall Thickness

Then we type the getkword code and set the answer to the variable wallthk. Type the
following:

(setq wallthk (getkword "\nWhat is the wall thickness, 2x [4 6] "))

Right after assigning the text value to the variable wallthk, then we will use the if function to
reassign the exact dimension of the true wood size to the variable wallthk. Again, this
technique uses more lines of code, so the user does not have to type the decimal at the
command line. Type the following lines:

(if (= wallthk "4") (setq wallthk 3.5))
(if (= wallthk "6") (setq wallthk 5.5))

Now that the wall thickness is set, we will need to inquiry about the wall height.

For the wall height the user
can type any real number at
the command line when
prompted with the question,
“What is the wall height?”
Remember the user cannot
type in a whole number with a
feet, inches and a fraction,
which many home builders
like to use. The response
needs to be typed in inches
and decimals.

 Figure 7.17 – Determining the Wall Height

In other programs, we will write a small routine allowing for feet, inches and fractions. For
now, type the following:

(setq wallht (getreal "\nWhat is the wall height? "))

Now we will create the layers we need for this project.

 7-18

Creating Layers with the Visual AutoLISP Command Function

In all of the other Visual
AutoLISP programs, we run
the code on the layer that we
want to have the orthographic
view or notes. In this detail,
we will place the entities on
unique layers such as footer,
block, wood, dimension and
text. Then we will lame
addition layers for center,
hidden and section lines.

 Figure 7.18 – Creating Layer in AutoLISP

An easy way to make a layer for a detail is to use the command function and to follow the
creating a new layer process. This can be harder for individuals just newly training with
AutoCAD, since many computer aided design tools are now in dialogue boxes and we cannot
easily view all the options that are available with a command function. We will share the most
common options in the table below.

Command Layer Function Command Layer Function
(command "layer" "n" "footer" “”) Makes a new layer named “footer”

(command "layer" "c" "8" “footer" “”) Sets the layer color to “color 8” for
layer named “footer”

(command "layer" "lt" "center" ”center" "")

Sets the layer linetype to “center” for
layer named “center”

(command "layer" "s" "footer" “”) Sets the current layer as “footer”
(command "layer" "f" "footer" “”) Freezes the layer named “footer”
(command "layer" "t" "footer" “”) Thaws the layer named “footer”
(command "layer" "on" "footer" “”) Turns the layer named “footer” on
(command "layer" "off" "footer" “”) Turns the layer named “footer” off
(command "layer" "lo" "footer" “”) Locks the layer named “footer”
(command "layer" "u" "footer" “”) Unlocks the layer named “footer”

We can combine layer options such as new and color and create a command line expression that
will both create a new layer and set the color for that layer. When we use the color option "c",
the next item is the name or number of the color, followed by the name of the layer. To end the
layer command expression, place an open and closed quote "" at the end of the code and then a
closed parenthesis.

Type the following lines in the wallsection program.

;;; setup layers

 7-19

(command "layer" "n" "footer" "c" "8" “footer" "")
(command "layer" "n" "block" "c" "8" "block" "")
(command "layer" "n" "wood" "c" "14" "wood" "")
(command "layer" "n" "dimension" "c" "red" "dimension" "")
(command "layer" "n" "text" "c" "green" "text" "")

Now we will make the center,
hidden and section layers in
the routine. We may be using
different colors or layer
names than what your
organization uses, so feel to
free to make changes to the
layer name or color that
defines your group’s standard
layers. changes

 Figure 7.19 – Creating Layer with Special Linetypes

If the layer name, color and linetype already exists in the drawing, nothing will change when
these lines of code execute.

Type the following lines in the wallsection program.

(command "layer" "n" "center" "c" "yellow" "center" "lt" "center" "center" "")
(command "layer" "n" "hidden" "c" "magenta" "hidden" "lt" "hidden" "hidden" "")
(command "layer" "n" "section" "c" "cyan" "section" "lt" "phantom" "section" "")

Doing the Math in Visual AutoLISP

Now, we will return back to the middle of the program and finish the math section of the code.
Again the setq function is the choice for assigning values to the variables X1, X2, X3, X4, X5,
X6, X7, X8, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11 and Y12.

The car function is used with
variable sp (the starting point)
to extract the x-coordinate of
the starting point list. If the
starting point is (4, 3, 0) then
(car sp) will return as 4 and
be assigned to the variable
X1. So the car function
returns the first number in the
list.

 Figure 7.20 – Defining the X-Ordinates

 7-20

That explains the use of car to find the coordinates x1, now we have to continue down the X
grid to obtain value for x2. To obtain the x2 coordinate, use the addition function + to add to
the x1 value. To get the number to add to the x1, we have to divide the block width BW by two
using the divide function / like so. Notice that the function is written first, followed by the
numerator BW and then the denominator 2.0.

(/ BW 2.0)

And place that expression in the addition expression to build a compound expression.

(+ x1 (/ BW 2.0))

Now assign the value to x2

x2 (+ x1 (/ width 2.0))

Type the following lines in the wallsection program using the sketch in Figure 7.2 to find the X
ordinate the dimension that defines the horizontal measurements.

;;; math

(setq x1 (car sp)
 x2 (+ x1 (/ BW 2.0))
 x3 (+ x2 BW)
 x4 (+ x1 FW)
 x5 (- x3 1.5)
 x6 (- x3 sillplate)
 x7 (- x3 24.0)
 x8 (- x3 wallthk)
)

Likewise, the cadr function is
used with variable sp (the
starting point) to extract the y-
coordinate of the starting
point. Again, if the starting
point is (4, 3, 0) then (cadr
sp) will return as 3 and be
assigned to the variable y1. So
the cadr function returns the
second number in the list.

 Figure 7.21 – Defining the Y-Ordinates

To find the value for the adaptable y2, we add the variable for the footer height fh. We use the
adding LISP function + to make the expression

y2 (+ y1 fh)

 7-21

Other than for the measurement y5, all of the vertical distances are compiled by using the
adding or subtracting functions. Type the following lines in the wallsection program using the
sketch in Figure 7.2 to find the Y ordinate the dimension that defines the vertical measurements.

(setq y1 (cadr sp)
 y2 (+ y1 fh)
 y3 (+ y2 0.375)
 y4 (+ y2 8.0)
 y5 (+ y2 (* courses 8.0))
 y6 (+ y5 1.5)
 y7 (+ y6 joist)
 y8 (+ y7 floor)
 y9 (+ y8 1.5)
 y12 (+ y8 wallht)
 y11 (- y12 1.5)
 y10 (- y11 1.5)
)

Making Point Assignments in Visual AutoLISP

One of the easiest sections of
code for a new or experienced
programmer to accomplish is
the point assignments, where
one assigns X and Y
coordinates to the point
vertexes. Basically, we did
the work when we made the
Wallsection sketch. When we
define the points for the
footer, remember when we
read that coordinate P1 is (X1,
Y1). P2 is (X4, Y1). P3 is
(X4, Y2). P4 is (X1, Y2).
Now we write a setq
expression setting these grids
coordinates to the points p1,
p2, p3, p4 through p29.

 Figure 7.22 – Defining the Point Assignments

The list function can create an X, Y and Z coordinate by typing the appropriate X and Y values
after the function name. We do not need to add the Z coordinate if the value is going to be zero.
(See Figure 7.22)

Type the following lines in the wallsection program using the sketch in Figure 7.2 to find the X
and Y coordinate for each point.

 7-22

; point assignments

(setq p1 (list x1 y1)

p2 (list x4 y1)
p3 (list x4 y2)
p4 (list x1 y2)
p5 (list x2 y3)
p6 (list x3 y3)
p7 (list x3 y4)
p8 (list x2 y4)
p9 (list x2 y2)
p10 (list x3 y2)
p11 (list x6 y5)
p12 (list x3 y5)
p13 (list x3 y6)
p14 (list x6 y6)
p15 (list x5 y6)
p16 (list x3 y7)
p17 (list x5 y7)
p18 (list x3 y8)
p19 (list x7 y7)
p20 (list x7 y8)
p21 (list x8 y8)
p22 (list x8 y9)
p23 (list x3 y9)
p24 (list x8 y10)
p25 (list x3 y10)
p26 (list x8 y11)
p27 (list x3 y11)
p28 (list x8 y12)
p29 (list x3 y12)

)

Drawing in Visual AutoLISP

Before drawing the first line
in the Wallsection detail, we
will set the current layer as
“footer”. Before we draw an
entity using the command
functions of line, pline and arc
tools, we will continually
place the article on the precise
drawing layer. Type the
following code to set the
current layer to “footer”.

 Figure 7.23 – Setting a Footer Layer as Current

 7-23

(command "layer" "s" "footer" "")

Now that the layer is set to footer, we will proceed to draw the footer which has four points.
When automatically drawing any entity in AutoCAD, the programmer uses the command
function which evokes any AutoCAD standard command. We have to state this rule, since ARX
commands typed at the command line like Render or Rotate3D need to be executed differently,
which we did in Chapter 6 with the saveimg function. After the command function is typed,
the command “line” follows in quotes, then by the point vertexes p1 p2 p3 p4 of the box and
finally “c” to close the polygon.

Type the following code:

;;; lets draw

(command "line" p1 p2 p3 p4 "c")

And the LISP routine draws a
rectangle representing the
footer on the AutoCAD
graphical display. Next, we
set the current layer to block,
so the concrete block in the
foundation wall will be on a
unique layer. Some students
will make a layer called
foundation and place both the
footer and the blocks on one
layer. Type this next code.

 Figure 7.24 – Setting a Block Layer as Current

(command "layer" "s" "block" "") ; sets layers to the block layer

Now we want to draw the first
concrete block using the pline
drawing tool, so there will be
a single entity instead of four
lines. The LISP expression for
"pline" is very much the
same as "line" when typing
in the syntax. Type the
following text in your
Wallsection program.

 Figure 7.25 – Draw the Concrete Block with Pline

(command "pline" p5 p6 p7 p8 "c") ; draws pline 1st block

 7-24

Now, we do not want to stop a
running program to select an
entity to move, copy or array,
so we are going to obtain the
last polyline by using the
ssget “L” function. We will
place the information
regarding the last unit into a
variable called ss1. When we
want to modify this article, we
just refer to ss1.

 Figure 7.26 – Select the Last Entity Drawn

To assign the last item drawn, type the following expression.

(setq ss1 (ssget "L")) ; select the block

Practice typing the following examples of the ssget “L” function at the command line of
AutoCAD.

Function Name Description

ssget Obtain a Selection
Set

Allows the user to create a
selection set by picking
entities on the graphical
display

Examples

For picking with a mouse (setq ss1 (ssget))

Selection Set: 7

Last entity drawn (setq ss1 (ssget “L”))

Selection Set: 9

Select the last entity selected (setq ss1 (ssget “P”))

Selection Set: 10

Selects all the entities (setq ss1 (ssget “A”))

Selection Set: 3

We will then draw the two
arcs that represent the mortar
joint between the footer and
the block. To draw an arc, we
will want to place the points
in a counterclockwise manner
in the AutoCAD drawing
system. We will use the Start
– End – Radius method for
forming the arc.

 Figure 7.27 – Draws the Mortar Joint

 7-25

We will opt for p9 as the arc starting point, and p5 for the end point. The mortar joint is 0.375
so the radius will be 0.1875. After typing the command “arc” expression, store information
each about the arc using the ssget “L” function.

Type the following expressions and comments.

(command "arc" p9 "en" p5 "r" 0.1875) ; draws mortar joint arc
(setq ss2 (ssget "L")) ; select the mortar joint arc
(command "arc" p6 "en" p10 "r" 0.1875) ; draws mortar joint arc
(setq ss3 (ssget "L")) ; select the mortar joint arc

Now we have the concrete
block and mortar joint
symbolized by the two arcs
drawn on the graphical
display and stored in memory,
so we can easily array the
entities in the detail. The array
tool is a two part command,
the first section we select
objects and the second part
we execute the function.

 Figure 7.28 – Array the Blocks and Mortar Joint

Type the following expression and comments.

(command "array" ss1 ss2 ss3 "" "r" courses 1 8 1) ; arrays the courses of block

The objects we select are ss1 ss2 and ss3. Use the double quotes "" as an Enter to proceed the
next element of the array command. The "r" is for the rectangle array. The number of rows is
the variable courses and the number of columns is 1. The distance between rows is 8 and the
space between columns is 1. The rectangular array is a very straight forward command.

Finally to finish the drawing
section of the Construction
Code, we will set the current
layer to "wood" and then
draw the sillplate, joist, floor,
sole plate, stud, and both top
plates. The outside of the
wood is made with a polyline
and the crossed lines inside
the polyline represent cutting
line when we inspect the
detail. Again, Figure 7.2 is an
excellent reference for
checking points for the pline
and line functions.

 Figure 7.29 – Draws the Wood Components

 7-26

Type the following expressions and comments.

(command "layer" "s" "wood" "") ; sets layers to the wood layer
(command "pline" p11 p12 p13 p14 "c") ; draws the sillplate
(command "line" p12 p14 "") ; draws the sillplate
(command "line" p13 p11 "") ; draws the sillplate
(command "pline" p13 p16 p17 p15 "c") ; draws the joist
(command "line" p15 p16 "") ; draws the joist
(command "line" p13 p17 "") ; draws the joist
(command "pline" p16 p19 p20 p18 "c") ; draws the floor
(command "pline" p18 p21 p22 p23 "c") ; draws the sole plate
(command "line" p18 p22 "") ; draws the sole plate
(command "line" p23 p21 "") ; draws the sole plate
(command "pline" p22 p23 p25 p24 "c") ; draws the stud
(command "pline" p24 p25 p27 p26 "c") ; draws the first double top plate
(command "line" p26 p25 "") ; draws the first double top plate
(command "line" p24 p27 "") ; draws the first double top plate
(command "pline" p26 p27 p29 p28 "c") ; draws the second double top plate
(command "line" p28 p27 "") ; draws the second double top plate
(command "line" p29 p26 "") ; draws the second double top plate

Ending the Program

To end the program, we will
set the object snap mode
back to the original settings
by using the setvar function
followed by the variable osm
which holds the original
integer containing the Osnap
settings. Type the following
code.

(setvar "osmode" osm)

 Figure 7.30 – End of Program

To end the program, we will
need to place a parenthesis at
the end of the code to close
the defun c:nm function.
Type the following code.

(princ)

)

 Figure 7.31 – Using the Princ Function

 7-27

The princ function used in this routine will allow the program to end without printing the last
line of the program to the command line. Without this function the command line can show a
number or text that may not make sense to the use. This function is used to keep your code neat.

Practice typing the following examples of the princ function at the command line of AutoCAD.

Function Name Description

princ Princ Function

Will allow the program to
run without printing the last
line of the code to the
command line

Example

Typing an expression at the
command line without the
princ function

(setq a “Hello”) Answer: “Hello”

Typing an expression at the
command line without the
princ function

(setq a “Hello”)(princ) Answer: nothing

Saving the Program

Now that the program is
finished, we need to double
check our typing with the
text in this manual and then
save our program to our
folder named “Visual
AutoLISP Programs”.

Make sure the Look in list
box is displaying the Visual
LISP Programs folder and
then select the program
“wallsection” and press the
Load button. At the bottom
– left corner of the Load /
Unload Applications window
you will see a small text
display that was blank
initially but now displays the
text as shown in Figure 7.32,

“wallsection.LSP
successfully loaded”

 Figure 7.32 – Loading the Wallsection Program

 7-28

After noting that the program
is loaded, press the Close
button and now when you
are in the AutoCAD
program, an AutoCAD
message window appears in
the middle of the graphics
display. The copyright and
information to start the
program is shown.

 Figure 7.33 – The Alert Message

Running the Program

Press the OK button if you
agree with the message and
follow your own instructions
by typing wallsection at the
command line. The message
“Pick starting point” appears
on the command line and
then we should select a point
at the lower left hand corner
of the AutoCAD graphics
display.

 Figure 7.34 – Starting the Program

Programs creating and placing text on a drawing are very easy to write once we have achieved
writing the first program with these new functions. There are addition exercises for text based
routines in the appendixes of this manual. Written below is the entire wallsection.LSP code for
your benefit.

;;; wallsection.lsp
;;;
;;; a lisp routine that generates a custom wall section for a residential house
;;;
;;; Copyright (C) 1999 by Charles Robbins
;;;
;;; Charles Robbins provide this code for your use. Use the code to your benefit
;;; and at your own risk. Charles Robbins does not warrant that the code is error
;;; free in your application.

(alert "wallsection.lsp - copyright 1999 by Charles Robbins. Type wallsection to start.”)

;;; start program

(defun c:wallsection (/)

 7-29

;;; setup

(setq osm (getvar "osmode"))
(setvar "osmode" 0)

;;; ask questions

(setq sp (getpoint "\nPick starting point "))

(initget 1 "8 12")
(setq bw (atoi (getkword "\nWhat is the block size? [8 12] ")))
(if (= bw 8.0) (setq fw 16.0 sillplate 5.5) (setq fw 24.0 sillplate 7.5))

(setq fh (getreal "\nWhat is the footer height? "))
(setq courses (getint "\nHow many courses of block? "))

(initget 1 "10 12 16 20")
(setq joist (getkword "\nWhat is the size of joist, 2 x [10 12 16 20] "))
(if (= joist "10") (setq joist 9.25))
(if (= joist "12") (setq joist 11.25))
(if (= joist "16") (setq joist 15.25))
(if (= joist "20") (setq joist 19.25))

(initget 1 "75 100 125 ")
(setq floor (getkword "\nWhat is the thickness of the floor, [75 100 125] "))
(if (= floor "75") (setq floor 0.75))
(if (= floor "100") (setq floor 1.00))
(if (= floor "125") (setq floor 1.25))

(initget 1 "4 6 ")
(setq wallthk (getkword "\nWhat is the wall thickness, 2x [4 6] "))
(if (= wallthk "4") (setq wallthk 3.5))
(if (= wallthk "6") (setq wallthk 5.5))

(setq wallht (getreal "\nWhat is the wall height? "))

;;; setup layers

(command "layer" "n" "footer" "c" "8" "footer" "")
(command "layer" "n" "block" "c" "8" "block" "")
(command "layer" "n" "wood" "c" "14" "wood" "")
(command "layer" "n" "dimension" "c" "red" "dimension" "")
(command "layer" "n" "text" "c" "green" "text" "")
(command "layer" "n" "center" "c" "yellow" "center" "lt" "center" "center" "")
(command "layer" "n" "hidden" "c" "magenta" "hidden" "lt" "hidden" "hidden" "")
(command "layer" "n" "section" "c" "cyan" "section" "lt" "phantom" "section" "")

;;; math

(setq x1 (car sp)
 x2 (+ x1 (/ BW 2.0))
 x3 (+ x2 BW)
 x4 (+ x1 FW)
 x5 (- x3 1.5)
 x6 (- x3 sillplate)
 x7 (- x3 24.0)
 x8 (- x3 wallthk)
)

(setq y1 (cadr sp)
 y2 (+ y1 fh)
 y3 (+ y2 0.375)
 y4 (+ y2 8.0)
 y5 (+ y2 (* courses 8.0))
 y6 (+ y5 1.5)
 y7 (+ y6 joist)
 y8 (+ y7 floor)

 7-30

 y9 (+ y8 1.5)
 y12 (+ y8 wallht)
 y11 (- y12 1.5)
 y10 (- y11 1.5)
)

; point assignments

(setq p1 (list x1 y1)
 p2 (list x4 y1)
 p3 (list x4 y2)
 p4 (list x1 y2)
 p5 (list x2 y3)
 p6 (list x3 y3)
 p7 (list x3 y4)
 p8 (list x2 y4)
 p9 (list x2 y2)
 p10 (list x3 y2)
 p11 (list x6 y5)
 p12 (list x3 y5)
 p13 (list x3 y6)
 p14 (list x6 y6)
 p15 (list x5 y6)
 p16 (list x3 y7)
 p17 (list x5 y7)
 p18 (list x3 y8)
 p19 (list x7 y7)
 p20 (list x7 y8)
 p21 (list x8 y8)
 p22 (list x8 y9)
 p23 (list x3 y9)
 p24 (list x8 y10)
 p25 (list x3 y10)
 p26 (list x8 y11)
 p27 (list x3 y11)
 p28 (list x8 y12)
 p29 (list x3 y12)
)

; let draw

(command "layer" "s" "footer" "") ; sets layers to the footer layer
(command "line" p1 p2 p3 p4 "c") ; draw the footer
(command "layer" "s" "block" "") ; sets layers to the block layer
(command "pline" p5 p6 p7 p8 "c") ; draws pline 1st block
(setq ss1 (ssget "L")) ; select the block
(command "arc" p9 "en" p5 "r" 0.1875) ; draws mortar joint arc
(setq ss2 (ssget "L")) ; select the mortar joint arc
(command "arc" p6 "en" p10 "r" 0.1875) ; draws mortar joint arc
(setq ss3 (ssget "L")) ; select the mortar joint arc
(command "array" ss1 ss2 ss3 "" "r" courses 1 8 1) ; arrays the courses of block
(command "layer" "s" "wood" "") ; sets layers to the wood layer
(command "pline" p11 p12 p13 p14 "c") ; draws the sillplate
(command "line" p12 p14 "") ; draws the sillplate
(command "line" p13 p11 "") ; draws the sillplate
(command "pline" p13 p16 p17 p15 "c") ; draws the joist
(command "line" p15 p16 "") ; draws the joist
(command "line" p13 p17 "") ; draws the joist
(command "pline" p16 p19 p20 p18 "c") ; draws the floor
(command "pline" p18 p21 p22 p23 "c") ; draws the sole plate
(command "line" p18 p22 "") ; draws the sole plate
(command "line" p23 p21 "") ; draws the sole plate
(command "pline" p22 p23 p25 p24 "c") ; draws the stud
(command "pline" p24 p25 p27 p26 "c") ; draws the first double top plate
(command "line" p26 p25 "") ; draws the first double top plate
(command "line" p24 p27 "") ; draws the first double top plate
(command "pline" p26 p27 p29 p28 "c") ; draws the second double top plate

 7-31

(command "line" p28 p27 "") ; draws the second double top plate
(command "line" p29 p26 "") ; draws the second double top plate

;;; end of program

(command "layer" "s" "0" "")
(command "zoom" "e")
(setvar "osmode" osm)
(gc)
(princ)
)

