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C h a p t e r 2
 

Energy Transfer 

 
In this chapter, you will learn the following to World Class standards: 
 
! Energy Transfer 
! Specific Heat of a Material 
! Heat Transfer Calculations 
! Heat Transfer through Barriers 
! Calculating Energy Losses with R-Values 
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Energy Transfer 
_________________________________________________________
 
One of the largest usages of energy in the world is heating or cooling of a building, whether 
that structure is a home or business. Even if people would tolerate a daily range of 
temperatures from lets say 40°F (4.4°C) to 80°F (26.7°C), where they would just turn off the 
furnace and the air conditioner, the products they purchase would not fare well, because they 
also work best or last longer when they reside in a nominal ambient temperature. Using a 
different strategy, we could just heat or cool ourselves using an environmental suit which 
would take far less energy, since a family of four would only have to hold the average 
comfortable heat or temperature they desire against their own skin, and then the furniture, 
kitchen appliances and the bedroom articles would have to survive the weather with their own 
protection. So unless we want to change the design of all our household or business 
possessions, we will need to heat or cool the entire dwelling to maintain our accustomed 70°F 
(21.1°C) temperature. 
 
So whether we wish to control the temperature with a macro or micro system, we first need to 
understand how we gain heat or then how heat is lost. If we place a pot that contains a gallon 
of water on a gas stove, we could add energy to the water by heating the base of the pot with a 
fire. By igniting the fossil fuel (methane gas) coming from the burners on top the stove, a 
flame heats the atoms in the stainless steel container, exciting the electrons which cause 
motion and vibration by radiation. Radiation is one of three methods that heat energy flows, 
where the energy is transmitted to the container through electromagnetic waves which can 
travel through space. We can measure the amount of thermal energy the container is receiving 
by measuring the temperature of the pot.  
 

Some of the heat will dissipate away from the 
exterior of the containing through conduction, the 
second method of energy flow. However, since 
the molecules in the air next to the pot are not 
very dense, the transfer of the hotter temperature 
to the lower temperature in this region is not 
substantial. The thermal energy from the stainless 
steel container will transfer or conduct more 
effectively to the water in the pot where the liquid 
was at ambient temperature. Through conduction, 
the excited atoms of the metal pot are in direct 
contact with the water molecules, and the excited 
molecules in the pot interact with the atoms of the 
water. We also can measure the temperature of 
the water at the bottom of the pan to detect the 
transfer of thermal energy. 
  
 Figure 2.1 � 3 Types of Energy Flow 
 
The last method of energy flow we will examine in our example is what is happening in the 
water. At the bottom of the container, the water is becoming extremely energized or as we 
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would remark, �hot�. Most often in fluids, convection takes over as the main method of heat 
transfer. As the water is heated, the density of the liquid, which is the amount of molecules per 
given volume gets smaller, and in this case the hotter and lighter water will rise to the surface, 
being replaced by the heavier and colder water. After just a few moments, we can observe the 
fluid in the container moving from bottom to top and from top to bottom. Convection of heat 
energy will take place is phases of matter that are fluid and are able to move freely. 
 

Radiation The transfer of thermal energy 
through space by 
electromagnetic wave 

  

Conduction The transfer of thermal energy 
from one body of matter to 
another by contact 

  

Convection The transfer of  thermal energy 
mainly in fluids by motion 

In any system we observe, all 
energy is conserved and never 
destroyed. However, we may want 
that energy to be directed 
efficiently in the direction we 
choose and that may not always 
happen.  As technicians, we need 
to know how to use and contain 
energy by design.   
   

When we heat a building to levels that are comfortable to people, very often the outside 
temperatures are different than the interior nominal temperature of 70°F (21.1°C). If the 
outside air temperature is 20°F (-6.7°C), then the differential between the two levels of heat is 
50°F (10.0°C). The pathway to equilibrium in the system is for the energy in the building to 
reach a balance with the outside environment. In most cases that we observe, the hotter 
elements release energy to the cooler until they reach symmetry. In this study, we need to 
understand how different substances gain or lose heat, and so we need to comprehend Specific 
Heat. 
 
 

Specific Heat of a Material 
_________________________________________________________
 
The specific heat of a material is the amount of energy to raise an amount of substance 1 
degree. The measurement is made in three major systems, Joules per kilogram degree Celsius, 
Calorie per gram degree Celsius and BTU per pound degree Fahrenheit.   
 
We know from studying the last chapter, the Nature of Energy, that the Joule is the amount of 
energy to lift a one Newton (4.4 pounds) weight the distance of one meter (3.28 feet). A Joule 
can also raise a kilogram of water one degree Celsius. The Joule is the most prevalent mode of 
measuring energy; however some industries still use the BTU. The British Thermal Unit 
(BTU) is the amount of energy to increase one pound of liquid water one Fahrenheit degree. 
Another unit we may see in a specific heat table is the calorie. This is the amount of energy to 
raise a gram of matter one degree Celsius. When we can also observe the amount of Watts in 
an energy formula or in a set of data. Remember that a Watt is one joule per second. 
 
The table in Figure 2.2 shows the specific heat of common materials. We can find the specific 
heat of materials in product data sheets in catalogs or on web pages. Depending on the purity 
of the material and the accuracy of the test, the quantities recorded can vary slightly between 
published tables. We included the density of some of the materials for the problems in this 
chapter.  
 



 2-4

 

Substance Joules/kg °C Calorie/g °C BTU/lb °F Density (lb/in³) 
Air (50° C) 1006 0.240 0.240  
Aluminum, 6061-T6 963 0.230 0.230 0.098 
Concrete 1000 0.239 0.239  
Glass 837 0.200 0.200  
Granite 790 0.190 0.190  
Ice (-10°C to 0°C) 2093 0.500 0.500  
Iron 440 0.105 0.105  
Marble 858 0.205 0.205  
Soil 1046 0.250 0.250  
Steam (100° C) 2009 0.480 0.480  
Steel C1020 419 0.100 0.100 0.284 
Water 4186 1.000 1.000 0.023 
Wood 1674 0.400 0.400   

 
Figure 2.2 � Table of Specific Heats for Common Materials 
 

Heat Transfer Calculations 
_________________________________________________________
 
To understand heat transfer of larger problems, we will start by examining the transfer of heat 
energy from small objects to the surrounding environment. 
 
The amount of heat energy transferred equals the mass of the object times the change in 
temperature times the specific heat of the material. In the formula below, Q is the amount of 
heat energy, m is equal to the mass of the body, ∆T is the change in temperature and Cp is the 
specific heat of the material. 

( )CpTmQ ∆=  
 

In our first heat transfer problem, we have a 1.0 inch cast aluminum cube at a 
temperature of 200°F in a foundry that surrounding air temperature of 72°F. How much 
heat energy is released when the cube cools to the surrounding temperature? 
 
The volume of the cube is 1 in. × 1 in. ×1 in. or 1 in³.  The density of aluminum is 0.098 
pounds per cubic inch, so 1 in³ × 0.098 lbs / in³ equals 0.098 lbs. 
 

( )CpTwQ ∆=  
 

( ) BTU 2.88512230.0128098.0/230.072200098.0 =××=°−°−°= FlbBTUFFQ  
 
The aluminum cube transferred 2.88 BTUs of energy into the room. Now, we can do another 
problem using the metric units. 
 

In our second heat transfer problem, we have a 3.5 kg aluminum casting at a 
temperature of 180°C in a foundry that surrounding air temperature of 22°C. How much 
heat energy is released when the cube cools to the surrounding temperature?  
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( )CpTmQ ∆=  
 

( ) Joules 532,5399631585.3/963221805.3 =××=°−°−°= CkgJCCkgQ  
 
The 3.5 kg aluminum casting emits 532,539 Joules of energy into the room. What if we made 
hundreds of these castings a day? Could we figure a way to use the heat from the foundry to 
warm the office? 
 
* World Class CAD Challenge 12-7 * - Find the amount of heat energy released in each 
problem in the table below. The information in the table can be in various systems of 
measurement, so you may have to convert the data prior to placing the amount into the 
heat energy formula. Complete each record in 2 minutes and record the answers in the 
table. 
 

 Heat 
Mass or 
Weight Heated Object

Room 
Temperature Material 

 Q Kg or lbs °C or °F °C or °F Aluminum 
1  10 kg 150 °C  20 °C Iron 
2  1.5 kg 100 °C 22 °C Steam 
3  100 lbs 90 °F  70 °F Water 
4  2000 lbs 85 °F 40 °F Concrete 
5  250 lbs 50 °C 10 °C Wood 
6  200 kg 50 °F 15 °C Marble 
7  10 lbs 35 °C 18 °C Glass 
8  400 kg 60 °C  21 °C Granite 
9  3 tons 85 °F 62 °F Soil 

10  9 tons 800 °F 80 °F Iron 
 
 
By familiarizing ourselves with specific heat quantities, we recognize that the process to raise 
the temperature of aluminum one degree requires more energy than increasing the temperature 
of an equal mass of steel one degree. We see that we can measure energy transfer by 
accurately recording the temperature of the surrounding air temperature. However, you might 
have already noticed in this simple equation, that in a smaller room, the heat from the hotter 
mass could be so great that the surrounding air temperature may increase significantly and 
therefore change the temperature in the equation throughout the transfer process. Then our 
answer would not be correct and the mass will not cool to our original projections. If the 
surrounding air temperature increases then the material will equalize above the initial air 
temperature reading and the observing the entire system, the temperatures balance out and the 
mass will no longer cool. 
 
The next equation we will study will look not just at heat loss, but at heat gain. In this formula, 
we state that heat loss equals heat gain, which matches the Law of Conservation of Energy. 
 

Heat loss = Heat gain 
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By investigating both the emitting material and the receiving matter, we can determine the 
temperature of the entire system when the transference of heat energy is complete. Before 
doing any calculations, we will have to think about what is changing as the heat energy 
transfers; that is what masses are losing heat energy and what matter is gaining energy. We 
will calculate how much energy causes a substance to change phases, from solid to liquid and 
from liquid to gas. We will continue to isolate our problem and ignore the affects of the 
outside world on the system we are investigating, such as the temperature outside the walls. 
 
When we examine problems where heat energy is transferred, we must understand that a large 
amount of energy is used to cause matter to change phases, such as from ice to water or from 
water to steam. There is an expenditure of energy in causing these phase transitions. In heat 
transfer problems where the mass changes phases from solid (ice), the temperatures can 
essentially remain the same but we require energy to change the state of matter. The Specific 
Latent Heat of Fusion for ice is 0.336 Mega Joules per kilogram, so if we want to melt 10 kg 
of ice, we would add 3.36 Mega Joules to the ice to have ice water. The Specific Latent Heat 
of Vaporization for water is 2.26 Mega Joules per kilogram. We would need 22.6 Mega Joules 
of energy to transition boiling water to steam. The graph in Figure 2.3 shows what is actually 
happening to the water as energy is spent to bring ice to steam.  
 

 
 
Figure 2.3 � Graph Showing Energy Usage to Transform a Material through States 
 
So in our first problem, we will melt ice in a large amount of water and discover the final 
temperature of the liquid, thus examining both concepts; heat loss equals heat gain and the 
applying the Specific Latent Heat. We will neglect examining any energy loss or gain from the 
surrounding environment. The formula to calculate the energy spent to change the state of 
matter such as ice to water is Mass times the Specific Latent Heat. 
 

mLQ =  
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Now, can you imagine that we can place 1 kilogram (2.2 pounds) of ice in container 
holding 10 kilograms (22 pounds) of water at 21.1°C (70°F). What is the final 
temperature of the water when the ice melts? Ignore any other surrounding conditions. 
 
We begin with the equation: 
 

Heat loss = Heat gain 
 
The heat loss in the experiment is in the surrounding water that initially was 21.1°C (70°F). As 
the warmer water melts the ice, two energies are spent. The first energy gain is in the ice, 
where a large amount of energy is used to transition the ice to water. The second amount of 
energy is in stabilizing the ice water to the final temperature of the mixture. Below, we see the 
breakdown displaying heat loss and gain. 
 
 

Heat loss = Heat gain 
     
Heat lost by 
surrounding 
water 

= 
Heat 
gained by 
the ice 
 

+ 
Heat gained by 
the warming ice 
water 

 
 

Now, we use our first formula, TmCpQ ∆=  and our new formula showing energy for 
transformation of a phase of matter, mLQ = in the calculation. The heat loss is on the left of 
the equation and the heat gains are on the right side. In the table, we found that the specific 
heat of water is 4186 Joules per kilogram degree Celsius. We are also utilizing the 3.36 × 105 

Joules per kilogram in the conversion of ice to water. 
 

icewatericewatericewaterficewww TCpmLmTCpm ∆+=∆  
 

)0(418611036.31)1.21(418610
5

CT
Ckg
Jkg

kg
JkgTC

Ckg
Jkg ff °−×

°
×+××=−°×

°
×  

 

ff TT 41861036.3)1.21(41860 5 +×=−  

 
883,246 � 41860 T = 336,000 + 4186 T 

 
883,246 � 336,000 =  4186 T + 41860 T 

 
547246 = 46046 T 

 

C11.88
46046

547246 °==T  
 
The final temperature of the water will be 11.88 °C. 
 
If we were observing the experiment, we would have 11 kg of water at 11.88 °C, with no ice 
remaining. We can see that this approach gives us more information concerning an actual 
event, where we can see the balancing of heat energy and determine the final temperature. 
Now we will place a large block of ice in a small room and determine the final temperature.  
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Can you imagine that we can 
place 5 kilogram (11 pounds) 
of ice in a room that is 10 ft by 
12 foot and has an 8 ft high 
ceiling at 22.2°C (72°F). What 
is the final temperature of the 
room when the ice melts and 
the room temperature and the 
water stabilize? Ignore any 
other surrounding conditions. 

 
  
 Figure 2.4 � Melting Ice in a Room 
In this problem, we need to get the cubic feet of the air in the room and convert the number to 
a mass using the density of air of 1.2 kilogram per cubic meter. 
 
The 10 ft by 12 ft by 8 ft room is 960 cubic feet. 960 cubic feet is 27.18 cubic meters. Multiply 
the 1.2 kilogram per cubic meter times 27.18 cubic meters, which equals 32.616 kilograms. 
 
 

Heat loss = Heat gain 
     
Heat lost by 
surrounding 
air 

= 
Heat gain 
by the ice 
 

+ 
Heat gained by 
the warming ice 
water  

 

icewatericewatericewaterficeairairair TCpmLmTCpm ∆+=∆  
 

)0(418651036.35)2.22(1006616.32
5

CT
Ckg
Jkg

kg
JkgTC

Ckg
Jkg ff °−×

°
×+××=−°×

°
×  

 

ff TT 418601036.3)2.22(32811.696 6 +×=−  

 
728,419.6512� 32811.696 T = 1,680,000 + 20930 T 

 
728,419.6512 - 1,680,000 = 32811.696 T + 20930 T 

 
-951580.3488 = 53741.696 T 

 

C-17.71
53741.696

 8951580.348- °==T  
 
The final temperature of the water will be -17.71°C. 
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* World Class CAD Challenge 12-8 * - A 50 kg iron stove is turned off in a 20 ft by 12 ft 
room with a 10 ft ceiling The iron stove�s temperature is 200°F and the current 
temperature in the room is 60°F.  Compute the final temperature in a room when the air 
temperature and the iron stove reach equilibrium. Ignore the surrounding conditions 
outside the room. 
 

Heat Transfer through Barriers 
_________________________________________________________
 
In the two types of problems we did, we either isolated the hot object from a ever changing 
surrounding environment while the material is cooling or in the second case we transferred 
energy from one system to another. In the real world, heat energy does leave the hotter object 
and transfer to the cooler room, but the next we discover that the walls or barriers that enclose 
our specific space also are transferring or receiving heat energy. If the temperature outside the 
building is colder, the heat energy from the room will transfer to the outside. In the summer, 
the greater heat energy is outside and the exterior walls act as a barrier to the transfer of 
energy. Now, we need to examine the materials ability to insulate or conduct heat energy. 
 
To calculate the energy transfer through a wall, we will use Fourier�s Law of Conductivity, 
which states that the rate of heat flow, dQ/dt through a homogenous solid barrier is directly 
proportional to the area of the barrier, the thermal conductivity of the material and the change 
of temperature from outside to inside and inversely proportional to the thickness of the barrier. 
The formula is shown below. 
 

x
TkA

t
Q

∆
∆−=  

 
Where:  Q = Heat energy 

t = time 
k = Thermal conductivity 
A = Area of the barrier (wall) 
∆T = Change of temperature 
∆x = Thickness of the barrier (wall)  

 

We need to discuss an example 
of transferring heat energy 
through a barrier. For instance, 
some concrete buildings are 
built with two inch polystyrene 
forms that are left in place. If 
the concrete�s temperature is 
4.4°C (40°F) and the room 
temperature is 21.7°C (71°F), 
what is the amount of energy 
loss in a 20 foot long by 10 foot 
tall wall?  
  

 Figure 2.5 � Fourier�s Law of Conductivity 
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After writing the formula, we look up the thermal conductivity of polystyrene (Styrofoam) in 
the table in Figure 2.6, which is 0.019 BTU per hour foot degree Fahrenheit. Next, the area is 
20 ft times 10 ft. The delta T or the change of temperature is 71°F minus 40°F. To compute the 
thickness of the wall, we divide 2 inches by 12 inches per foot to obtain 0.167 feet. Place the 
quantities in the equation as shown. 
  

x
TkA

t
Q

∆
∆−=  

 

( )
ft
FFftft

Ffthr
BTU

t
Q

167.0
40711020019.0 °−°×

°××
−=  

 

( ) BTU/hr 705.4
167.0

31200019.0 2 =°
°××

−=
ft
Fft

Ffthr
BTU

t
Q  

 
The energy loss from the wall is 705.4 BTU per hour, which is a small amount of energy loss, 
and the quantity is better than if we were using a non-insulated eight inch block or brick wall 
that we see in use throughout older buildings in the United States. Using the table in Figure 
2.6, to compute the energy loss in a wall using four inch red brick. The outside temperature is 
4.4°C (40°F) and the room temperature is 21.6°C (71°F). The wall is still 20 foot long by 10 
foot tall.  
 
 

Substance Watts/m °C BTU/hr ft °F 
Air (0° C) 0.024 0.014 
Aluminum, 6061-T6 205 118.5 
Concrete 0.8 0.46 
Glass 0.8 0.46 
Brick, red 0.6 0.347 
Ice (-10°C to 0°C) 1.6 0.925 
Iron 79.5 46.0 
Polystyrene 0.033 0.019 
Fiberglass 0.04 0.023 
Steel 50.2 29.0 
Water 0.6 0.347 
Wood 0.12-0.04 0.069-0.023  

 
Figure 2.6 � Table of Thermal Conductivity for Common Materials 
 
Begin by setting up the formula. 
 

x
TkA

t
Q

∆
∆−=  

 

( )
ft
FFftft

Ffthr
BTU

t
Q

167.0
40711020347.0 °−°×

°××
−=  
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( ) BTU/hr 12,883
167.0

31200347.0 2 =°
°××

−=
ft
Fft

Ffthr
BTU

t
Q  

 
The calculation shows that we lose 12,883 BTU per hour or 18 times more energy than with 
the 2 inch polystyrene barrier. 

 
 

* World Class CAD Challenge 12-9 * - A commercial building has 8 inch concrete walls. 
The building is 100 foot by 40 foot rectangle with 10 feet high walls. The temperature is 
20°F and the current temperature in the room is 70°F.  Ignoring the three doors, the 
front windows, and the ceiling, compute the energy loss through the building�s walls. 

 
 

Calculating Energy Losses with R-Values 
_________________________________________________________ 

 
Most of us have all heard of R values. In the building industry, they represent an inverse to the 
amount of heat energy loss through a wall, window, door or ceiling. There is relationship to 
the Fourier�s Law of Conductivity is that one R-value equals one degree Fahrenheit, square 

foot, hour per BTU, so rewrite Fourier�s Law of Conductivity, substituting 
x
k

∆
−  with

R
1  as 

shown in the formula below. 
 

R
TA

x
TkA

t
Q ∆×=

∆
∆−=  

 
Therefore, the higher the R-value the better when trying to save the heat energy in the building 
or keep the hot summer temperatures outside in the warmer weather. Recommendations from 
the U.S. Department of Energy for how much insulation do you need are in Figure 2.6. 
 
 
If we insulate a 200 square foot wall in central to northern Ohio to R22, and examine the 
energy loss on the 4.4°C (40°F) day when the room temperature is 21.6°C (71°F), what is 
the energy loss? 
 

R
TA

x
TkA

t
Q ∆×=

∆
∆−=  

 

hr / BTU 281.8
22

31200
2

2

=
××°
°×=

∆
∆−=

BTU
hrftF
Fft

x
TkA

t
Q  

 

Now, we can calculate the energy loss for a 100 ft by 40 ft building built on a concrete 
slab in zone 2 of the U.S. Department of Energy recommended insulation value map. The 
walls are 10 feet high. The temperature is 20°F and they keep the temperature set at 
70°F. The ground temperature is 50°F. The building has an electric furnace. Ignoring the 
doors and windows, what is the energy loss? 
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1 X X X  R-49 R-38 R-18 R-25 R-19 R-8 R-11 R-10 

1    X R-49 R-60 R-28 R-25 R-19 R-8 R-19 R-15 

2 X X X  R-49 R-38 R-18 R-25 R-19 R-8 R-11 R-10 

2    X R-49 R-38 R-22 R-25 R-19 R-8 R-19 R-15 

3 X X X X R-49 R-38 R-18 R-25 R-19 R-8 R-11 R-10 

4 X X X  R-38 R-38 R-13 R-13 R-19 R-4 R-11 R-4 

4    X R-49 R-38 R-18 R-25 R-19 R-8 R-11 R-10 

5 X    R-38 R-30 R-13 R-11 R-13 R-4 R-11 R-4 

5  X X  R-38 R-38 R-13 R-13 R-19 R4 R-11 R-4 

5    X R-49 R-38 R-18 R-25 R-19 R-8 R-11 R-10 

6 X    R-22 R-22 R-11 R-11 R-11 - R-11 R-4 

6  X X  R-38 R-30 R-13 R-11 R-13 R4 R-11 R-4 

6    X R-49 R-38 R-18 R-25 R-19 R8 R-11 R-10 
 
Figure 2.7 � Recommended Total R-Values for New Houses in Six Climate Zones 
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Our insulation for the zone 2 construction will be as follows: 
 
 

Concrete slab R-8 
Wall R-22 
Ceiling R-49  

 
 
The calculation for the 100 ft by 40 ft concrete slab is: 
 

hr / BTU 000,10
8

204000
2

2

=
××°

°×=∆×=

BTU
hrftF
Fft

R
TA

t
Q

 

 
The calculation for the 280 ft of 10 ft high walls is: 
 

hr / BTU 6364
22

502800
2

2

=
××°

°×=∆×=

BTU
hrftF
Fft

R
TA

t
Q

 

 
The calculation for the 100 ft by 40 ft ceiling is: 

 

hr / BTU 0824
49

504000
2

2

=
××°

°×=∆×=

BTU
hrftF
Fft

R
TA

t
Q  

 
Our total energy loses are: 
 

Area BTU / hr 
Concrete slab 10000
Wall 6364
Ceiling 4082
Total 22728 

 
* World Class CAD Challenge 12-10 * Now, we can calculate the energy loss for a 250 ft 
by 75 ft building built on a concrete slab in zone 3 of the U.S. Department of Energy 
recommended insulation value map. The walls are 9 feet high. The temperature is 20°F 
and they keep the temperature set at 70°F. The ground temperature is 55°F. The 
building has an electric furnace. Ignoring the doors and windows, what is the energy 
loss? 
 
The study of heat transfer is as complex as the number of transitions we want to include into 
the problem and there are many. There are numerous textbooks and guides that entirely 
investigate the subject of heat transfer. In the next chapter, we will learn about selecting 
prefabricated assemblies such as doors and windows that will save energy. 

 


